x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
sg_set.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\intrusive\sg_set.hpp
Girar
Efecto
Propiedad
Historial
///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2007 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SG_SET_HPP #define BOOST_INTRUSIVE_SG_SET_HPP #include
#include
#include
#include
namespace boost { namespace intrusive { //! The class template sg_set is an intrusive container, that mimics most of //! the interface of std::set as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class sg_set_impl { /// @cond typedef sgtree_impl
tree_type; //! This class is //! non-copyable sg_set_impl (const sg_set_impl&); //! This class is //! non-assignable sg_set_impl &operator =(const sg_set_impl&); typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //!
Effects
: Constructs an empty sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the value_compare object throws. sg_set_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //!
Requires
: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //!
Effects
: Constructs an empty sg_set and inserts elements from //! [b, e). //! //!
Complexity
: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is std::distance(last, first). //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template
sg_set_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(true, b, e, cmp, v_traits) {} //!
Effects
: Detaches all elements from this. The objects in the sg_set //! are not deleted (i.e. no destructors are called). //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. ~sg_set_impl() {} //!
Effects
: Returns an iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator begin() { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator begin() const { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //!
Effects
: Returns an iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return tree_.cend(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rend() { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //!
Precondition
: end_iterator must be a valid end iterator //! of sg_set. //! //!
Effects
: Returns a const reference to the sg_set associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static sg_set_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //!
Precondition
: end_iterator must be a valid end const_iterator //! of sg_set. //! //!
Effects
: Returns a const reference to the sg_set associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static const sg_set_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //!
Effects
: Returns the key_compare object used by the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //!
Effects
: Returns the value_compare object used by the sg_set. //! //!
Complexity
: Constant. //! //!
Throws
: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bool empty() const { return tree_.empty(); } //!
Effects
: Returns the number of elements stored in the sg_set. //! //!
Complexity
: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //!
Throws
: Nothing. size_type size() const { return tree_.size(); } //!
Effects
: Swaps the contents of two sets. //! //!
Complexity
: Constant. //! //!
Throws
: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_set_impl& other) { tree_.swap(other.tree_); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. template
void clone_from(const sg_set_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //!
Requires
: value must be an lvalue //! //!
Effects
: Tries to inserts value into the sg_set. //! //!
Returns
: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair
insert(reference value) { return tree_.insert_unique(value); } //!
Requires
: value must be an lvalue //! //!
Effects
: Tries to to insert x into the sg_set, using "hint" //! as a hint to where it will be inserted. //! //!
Returns
: An iterator that points to the position where the //! new element was inserted into the sg_set. //! //!
Complexity
: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_unique(hint, value); } //!
Requires
: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an ascapegoatitrary key with the contained values. //! //!
Effects
: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself. //! //!
Returns
: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //!
Complexity
: Average complexity is at most logarithmic. //! //!
Throws
: If the key_value_comp ordering function throws. Strong guarantee. //! //!
Notes
: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template
std::pair
insert_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(key, key_value_comp, commit_data); } //!
Requires
: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an ascapegoatitrary key with the contained values. //! //!
Effects
: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //!
Returns
: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //!
Complexity
: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the key_value_comp ordering function throws. Strong guarantee. //! //!
Notes
: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template
std::pair
insert_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(hint, key, key_value_comp, commit_data); } //!
Requires
: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the sg_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //!
Effects
: Inserts the value in the sg_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //!
Returns
: An iterator to the newly inserted object. //! //!
Complexity
: Constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_commit(reference value, const insert_commit_data &commit_data) { return tree_.insert_unique_commit(value, commit_data); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Inserts a range into the sg_set. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert(Iterator b, Iterator e) { tree_.insert_unique(b, e); } //!
Effects
: Erases the element pointed to by pos. //! //!
Complexity
: Average complexity is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { return tree_.erase(i); } //!
Effects
: Erases the range pointed to by b end e. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { return tree_.erase(b, e); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size()) + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //!
Effects
: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If the comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyValueCompare comp) { return tree_.erase(key, comp); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: If the internal value_compare ordering function throws. //! //!
Complexity
: O(log(size() + this->count(value)). Basic guarantee. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { return tree_.erase_and_dispose(key, comp, disposer); } //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.find(value) != end(); } //!
Effects
: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If comp ordering function throws. template
size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp) != end(); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //!
Effects
: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //!
Effects
: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //!
Effects
: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) const { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //!
Requires
: value shall not be in a sg_set/sg_multiset. //! //!
Effects
: init_node puts the hook of a value in a well-known default //! state. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //!
Effects
: Unlinks the leftmost node from the tree. //! //!
Complexity
: Average complexity is constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //!
Requires
: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //!
Effects
: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //!
Effects
: Rebalances the tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear. void rebalance() { tree_.rebalance(); } //!
Requires
: old_root is a node of a tree. //! //!
Effects
: Rebalances the subtree rooted at old_root. //! //!
Returns
: The new root of the subtree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //!
Returns
: The balance factor (alpha) used in this tree //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. float balance_factor() const { return tree_.balance_factor(); } //!
Requires
: new_alpha must be a value between 0.5 and 1.0 //! //!
Effects
: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_set_impl
&x, const sg_set_impl
&y) #else (const sg_set_impl
&x, const sg_set_impl
&y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (sg_set_impl
&x, sg_set_impl
&y) #else (sg_set_impl
&x, sg_set_impl
&y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_set that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_sg_set { /// @cond typedef sg_set_impl < typename make_sgtree_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class sg_set : public make_sg_set
::type { typedef typename make_sg_set
::type Base; public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); sg_set( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template
sg_set( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} static sg_set &container_from_end_iterator(iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } static const sg_set &container_from_end_iterator(const_iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } }; #endif //! The class template sg_multiset is an intrusive container, that mimics most of //! the interface of std::sg_multiset as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif class sg_multiset_impl { /// @cond typedef sgtree_impl
tree_type; //Non-copyable and non-assignable sg_multiset_impl (const sg_multiset_impl&); sg_multiset_impl &operator =(const sg_multiset_impl&); typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //!
Effects
: Constructs an empty sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. sg_multiset_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //!
Requires
: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //!
Effects
: Constructs an empty sg_multiset and inserts elements from //! [b, e). //! //!
Complexity
: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last //! //!
Throws
: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template
sg_multiset_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(false, b, e, cmp, v_traits) {} //!
Effects
: Detaches all elements from this. The objects in the sg_multiset //! are not deleted (i.e. no destructors are called). //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. ~sg_multiset_impl() {} //!
Effects
: Returns an iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator begin() { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator begin() const { return tree_.begin(); } //!
Effects
: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //!
Effects
: Returns an iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator end() { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator end() const { return tree_.end(); } //!
Effects
: Returns a const_iterator pointing to the end of the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator cend() const { return tree_.cend(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. reverse_iterator rend() { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //!
Precondition
: end_iterator must be a valid end iterator //! of sg_multiset. //! //!
Effects
: Returns a const reference to the sg_multiset associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static sg_multiset_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //!
Precondition
: end_iterator must be a valid end const_iterator //! of sg_multiset. //! //!
Effects
: Returns a const reference to the sg_multiset associated to the end iterator //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. static const sg_multiset_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member
( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //!
Effects
: Returns the key_compare object used by the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //!
Effects
: Returns the value_compare object used by the sg_multiset. //! //!
Complexity
: Constant. //! //!
Throws
: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //!
Effects
: Returns true is the container is empty. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. bool empty() const { return tree_.empty(); } //!
Effects
: Returns the number of elements stored in the sg_multiset. //! //!
Complexity
: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //!
Throws
: Nothing. size_type size() const { return tree_.size(); } //!
Effects
: Swaps the contents of two sg_multisets. //! //!
Complexity
: Constant. //! //!
Throws
: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_multiset_impl& other) { tree_.swap(other.tree_); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //!
Complexity
: Linear to erased plus inserted elements. //! //!
Throws
: If cloner throws. Basic guarantee. template
void clone_from(const sg_multiset_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts value into the sg_multiset. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Average complexity for insert element is at //! most logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(reference value) { return tree_.insert_equal(value); } //!
Requires
: value must be an lvalue //! //!
Effects
: Inserts x into the sg_multiset, using pos as a hint to //! where it will be inserted. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //!
Throws
: If the internal value_compare ordering function throws. Strong guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_equal(hint, value); } //!
Requires
: Dereferencing iterator must yield an lvalue //! of type value_type. //! //!
Effects
: Inserts a range into the sg_multiset. //! //!
Returns
: An iterator that points to the position where the new //! element was inserted. //! //!
Complexity
: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Does not affect the validity of iterators and references. //! No copy-constructors are called. template
void insert(Iterator b, Iterator e) { tree_.insert_equal(b, e); } //!
Effects
: Erases the element pointed to by pos. //! //!
Complexity
: Average complexity is constant time. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator i) { return tree_.erase(i); } //!
Effects
: Erases the range pointed to by b end e. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(iterator b, iterator e) { return tree_.erase(b, e); } //!
Effects
: Erases all the elements with the given value. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //!
Effects
: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase(const KeyType& key, KeyValueCompare comp) { return tree_.erase(key, comp); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Returns
: An iterator to the element after the erased element. //! //!
Effects
: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //!
Complexity
: Average complexity for erase element is constant time. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Returns
: An iterator to the element after the erased elements. //! //!
Effects
: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Complexity
: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(value)). //! //!
Throws
: If the internal value_compare ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Returns
: The number of erased elements. //! //!
Complexity
: O(log(size() + this->count(key, comp)). //! //!
Throws
: If comp ordering function throws. Basic guarantee. //! //!
Note
: Invalidates the iterators //! to the erased elements. template
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer) { return tree_.erase_and_dispose(key, comp, disposer); } //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //!
Requires
: Disposer::operator()(pointer) shouldn't throw. //! //!
Effects
: Erases all the elements of the container. //! //!
Complexity
: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //!
Throws
: Nothing. //! //!
Note
: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template
void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //!
Effects
: Returns the number of contained elements with the given key //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.count(value); } //!
Effects
: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //!
Complexity
: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //!
Throws
: If comp ordering function throws. template
size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.count(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //!
Effects
: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //!
Effects
: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //!
Effects
: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //!
Effects
: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //!
Effects
: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If the internal value_compare ordering function throws. std::pair
equal_range(const_reference value) const { return tree_.equal_range(value); } //!
Requires
: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //!
Effects
: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //!
Complexity
: Logarithmic. //! //!
Throws
: If comp ordering function throws. //! //!
Note
: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template
std::pair
equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This static function is available only if the
value traits
//! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //!
Requires
: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //!
Effects
: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //!
Requires
: value shall not be in a sg_multiset/sg_multiset. //! //!
Effects
: init_node puts the hook of a value in a well-known default //! state. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. //! //!
Note
: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //!
Effects
: Unlinks the leftmost node from the tree. //! //!
Complexity
: Average complexity is constant time. //! //!
Throws
: Nothing. //! //!
Notes
: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //!
Requires
: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //!
Effects
: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //!
Complexity
: Constant. //! //!
Throws
: Nothing. //! //!
Note
: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //!
Effects
: Rebalances the tree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear. void rebalance() { tree_.rebalance(); } //!
Requires
: old_root is a node of a tree. //! //!
Effects
: Rebalances the subtree rooted at old_root. //! //!
Returns
: The new root of the subtree. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //!
Returns
: The balance factor (alpha) used in this tree //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. float balance_factor() const { return tree_.balance_factor(); } //!
Requires
: new_alpha must be a value between 0.5 and 1.0 //! //!
Effects
: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator!= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(x == y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator> #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return y < x; } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator<= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(y < x); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline bool operator>= #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #else (const sg_multiset_impl
&x, const sg_multiset_impl
&y) #endif { return !(x < y); } #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif inline void swap #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED (sg_multiset_impl
&x, sg_multiset_impl
&y) #else (sg_multiset_impl
&x, sg_multiset_impl
&y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_multiset that yields to the same type when the //! same options (either explicitly or implicitly) are used. #ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
#else template
#endif struct make_sg_multiset { /// @cond typedef sg_multiset_impl < typename make_sgtree_opt
::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED template
class sg_multiset : public make_sg_multiset
::type { typedef typename make_sg_multiset
::type Base; public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same
::value)); sg_multiset( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template
sg_multiset( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} static sg_multiset &container_from_end_iterator(iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } static const sg_multiset &container_from_end_iterator(const_iterator end_iterator) { return static_cast
(Base::container_from_end_iterator(end_iterator)); } }; #endif } //namespace intrusive } //namespace boost #include
#endif //BOOST_INTRUSIVE_SG_SET_HPP
sg_set.hpp
Dirección de la página
Dirección del archivo
Anterior
23/34
Siguiente
Descargar
( 84 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.