x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
loops.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\lambda\loops.hpp
Girar
Efecto
Propiedad
Historial
// Boost Lambda Library -- loops.hpp ---------------------------------------- // Copyright (C) 1999, 2000 Jaakko J�rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 2000 Gary Powell (powellg@amazon.com) // Copyright (c) 2001-2002 Joel de Guzman // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // For more information, see www.boost.org // -------------------------------------------------------------------------- #if !defined(BOOST_LAMBDA_LOOPS_HPP) #define BOOST_LAMBDA_LOOPS_HPP #include "boost/lambda/core.hpp" namespace boost { namespace lambda { // -- loop control structure actions ---------------------- class forloop_action {}; class forloop_no_body_action {}; class whileloop_action {}; class whileloop_no_body_action {}; class dowhileloop_action {}; class dowhileloop_no_body_action {}; // For loop template
inline const lambda_functor< lambda_functor_base< forloop_action, tuple
, lambda_functor
, lambda_functor
, lambda_functor
> > > for_loop(const lambda_functor
& a1, const lambda_functor
& a2, const lambda_functor
& a3, const lambda_functor
& a4) { return lambda_functor_base< forloop_action, tuple
, lambda_functor
, lambda_functor
, lambda_functor
> > ( tuple
, lambda_functor
, lambda_functor
, lambda_functor
>(a1, a2, a3, a4) ); } // No body case. template
inline const lambda_functor< lambda_functor_base< forloop_no_body_action, tuple
, lambda_functor
, lambda_functor
> > > for_loop(const lambda_functor
& a1, const lambda_functor
& a2, const lambda_functor
& a3) { return lambda_functor_base< forloop_no_body_action, tuple
, lambda_functor
, lambda_functor
> > ( tuple
, lambda_functor
, lambda_functor
>(a1, a2, a3) ); } // While loop template
inline const lambda_functor< lambda_functor_base< whileloop_action, tuple
, lambda_functor
> > > while_loop(const lambda_functor
& a1, const lambda_functor
& a2) { return lambda_functor_base< whileloop_action, tuple
, lambda_functor
> > ( tuple
, lambda_functor
>(a1, a2)); } // No body case. template
inline const lambda_functor< lambda_functor_base< whileloop_no_body_action, tuple
> > > while_loop(const lambda_functor
& a1) { return lambda_functor_base< whileloop_no_body_action, tuple
> > ( tuple
>(a1) ); } // Do While loop template
inline const lambda_functor< lambda_functor_base< dowhileloop_action, tuple
, lambda_functor
> > > do_while_loop(const lambda_functor
& a1, const lambda_functor
& a2) { return lambda_functor_base< dowhileloop_action, tuple
, lambda_functor
> > ( tuple
, lambda_functor
>(a1, a2)); } // No body case. template
inline const lambda_functor< lambda_functor_base< dowhileloop_no_body_action, tuple
> > > do_while_loop(const lambda_functor
& a1) { return lambda_functor_base< dowhileloop_no_body_action, tuple
> > ( tuple
>(a1)); } // Control loop lambda_functor_base specializations. // Specialization for for_loop. template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS); detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS)) detail::select(boost::tuples::get<3>(args), CALL_ACTUAL_ARGS); } }; // No body case template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { for(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS); detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); detail::select(boost::tuples::get<2>(args), CALL_ACTUAL_ARGS)) {} } }; // Specialization for while_loop. template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); } }; // No body case template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { while(detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS)) {} } }; // Specialization for do_while_loop. // Note that the first argument is the condition. template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { do { detail::select(boost::tuples::get<1>(args), CALL_ACTUAL_ARGS); } while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ); } }; // No body case template
class lambda_functor_base
{ public: Args args; template
struct sig { typedef void type; }; public: explicit lambda_functor_base(const Args& a) : args(a) {} template
RET call(CALL_FORMAL_ARGS) const { do {} while (detail::select(boost::tuples::get<0>(args), CALL_ACTUAL_ARGS) ); } }; // The code below is from Joel de Guzman, some name changes etc. // has been made. /////////////////////////////////////////////////////////////////////////////// // // while_composite // // This composite has the form: // // while_(condition) // [ // statement // ] // // While the condition (an lambda_functor) evaluates to true, statement // (another lambda_functor) is executed. The result type of this is void. // Note the trailing underscore after while_. // /////////////////////////////////////////////////////////////////////////////// template
struct while_composite { typedef while_composite
self_t; template
struct sig { typedef void type; }; while_composite(CondT const& cond_, DoT const& do__) : cond(cond_), do_(do__) {} template
Ret call(CALL_FORMAL_ARGS) const { while (cond.internal_call(CALL_ACTUAL_ARGS)) do_.internal_call(CALL_ACTUAL_ARGS); } CondT cond; DoT do_; }; ////////////////////////////////// template
struct while_gen { while_gen(CondT const& cond_) : cond(cond_) {} template
lambda_functor
::type, typename as_lambda_functor
::type> > operator[](DoT const& do_) const { typedef while_composite< typename as_lambda_functor
::type, typename as_lambda_functor
::type> result; return result( to_lambda_functor(cond), to_lambda_functor(do_)); } CondT cond; }; ////////////////////////////////// template
inline while_gen
while_(CondT const& cond) { return while_gen
(cond); } /////////////////////////////////////////////////////////////////////////////// // // do_composite // // This composite has the form: // // do_ // [ // statement // ] // .while_(condition) // // While the condition (an lambda_functor) evaluates to true, statement // (another lambda_functor) is executed. The statement is executed at least // once. The result type of this is void. Note the trailing // underscore after do_ and the the leading dot and the trailing // underscore before and after .while_. // /////////////////////////////////////////////////////////////////////////////// template
struct do_composite { typedef do_composite
self_t; template
struct sig { typedef void type; }; do_composite(DoT const& do__, CondT const& cond_) : do_(do__), cond(cond_) {} template
Ret call(CALL_FORMAL_ARGS) const { do do_.internal_call(CALL_ACTUAL_ARGS); while (cond.internal_call(CALL_ACTUAL_ARGS)); } DoT do_; CondT cond; }; //////////////////////////////////// template
struct do_gen2 { do_gen2(DoT const& do__) : do_(do__) {} template
lambda_functor
::type, typename as_lambda_functor
::type> > while_(CondT const& cond) const { typedef do_composite< typename as_lambda_functor
::type, typename as_lambda_functor
::type> result; return result( to_lambda_functor(do_), to_lambda_functor(cond)); } DoT do_; }; //////////////////////////////////// struct do_gen { template
do_gen2
operator[](DoT const& do_) const { return do_gen2
(do_); } }; do_gen const do_ = do_gen(); /////////////////////////////////////////////////////////////////////////////// // // for_composite // // This statement has the form: // // for_(init, condition, step) // [ // statement // ] // // Where init, condition, step and statement are all lambda_functors. init // is executed once before entering the for-loop. The for-loop // exits once condition evaluates to false. At each loop iteration, // step and statement is called. The result of this statement is // void. Note the trailing underscore after for_. // /////////////////////////////////////////////////////////////////////////////// template
struct for_composite { template
struct sig { typedef void type; }; for_composite( InitT const& init_, CondT const& cond_, StepT const& step_, DoT const& do__) : init(init_), cond(cond_), step(step_), do_(do__) {} template
Ret call(CALL_FORMAL_ARGS) const { for (init.internal_call(CALL_ACTUAL_ARGS); cond.internal_call(CALL_ACTUAL_ARGS); step.internal_call(CALL_ACTUAL_ARGS)) do_.internal_call(CALL_ACTUAL_ARGS); } InitT init; CondT cond; StepT step; DoT do_; // lambda_functors }; ////////////////////////////////// template
struct for_gen { for_gen( InitT const& init_, CondT const& cond_, StepT const& step_) : init(init_), cond(cond_), step(step_) {} template
lambda_functor
::type, typename as_lambda_functor
::type, typename as_lambda_functor
::type, typename as_lambda_functor
::type> > operator[](DoT const& do_) const { typedef for_composite< typename as_lambda_functor
::type, typename as_lambda_functor
::type, typename as_lambda_functor
::type, typename as_lambda_functor
::type> result; return result( to_lambda_functor(init), to_lambda_functor(cond), to_lambda_functor(step), to_lambda_functor(do_)); } InitT init; CondT cond; StepT step; }; ////////////////////////////////// template
inline for_gen
for_(InitT const& init, CondT const& cond, StepT const& step) { return for_gen
(init, cond, step); } } // lambda } // boost #endif // BOOST_LAMBDA_LOOPS_HPP
loops.hpp
Dirección de la página
Dirección del archivo
Anterior
11/13
Siguiente
Descargar
( 13 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.