x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
quaternion.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\quaternion.hpp
Girar
Efecto
Propiedad
Historial
// boost quaternion.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_QUATERNION_HPP #define BOOST_QUATERNION_HPP #include
#include
// for the "<<" and ">>" operators #include
// for the "<<" operator #include
// for BOOST_NO_STD_LOCALE #include
#ifndef BOOST_NO_STD_LOCALE #include
// for the "<<" operator #endif /* BOOST_NO_STD_LOCALE */ #include
#include
// for the Sinus cardinal #include
// for the Hyperbolic Sinus cardinal namespace boost { namespace math { #if BOOST_WORKAROUND(__GNUC__, < 3) // gcc 2.95.x uses expression templates for valarray calculations, but // the result is not conforming. We need BOOST_GET_VALARRAY to get an // actual valarray result when we need to call a member function #define BOOST_GET_VALARRAY(T,x) ::std::valarray
(x) // gcc 2.95.x has an "std::ios" class that is similar to // "std::ios_base", so we just use a #define #define BOOST_IOS_BASE ::std::ios // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::valarray; using ::std::sqrt; using ::std::cos; using ::std::sin; using ::std::exp; using ::std::cosh; #endif /* BOOST_WORKAROUND(__GNUC__, < 3) */ #define BOOST_QUATERNION_ACCESSOR_GENERATOR(type) \ type real() const \ { \ return(a); \ } \ \ quaternion
unreal() const \ { \ return(quaternion
(static_cast
(0),b,c,d)); \ } \ \ type R_component_1() const \ { \ return(a); \ } \ \ type R_component_2() const \ { \ return(b); \ } \ \ type R_component_3() const \ { \ return(c); \ } \ \ type R_component_4() const \ { \ return(d); \ } \ \ ::std::complex
C_component_1() const \ { \ return(::std::complex
(a,b)); \ } \ \ ::std::complex
C_component_2() const \ { \ return(::std::complex
(c,d)); \ } #define BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(type) \ template
\ quaternion
& operator = (quaternion
const & a_affecter) \ { \ a = static_cast
(a_affecter.R_component_1()); \ b = static_cast
(a_affecter.R_component_2()); \ c = static_cast
(a_affecter.R_component_3()); \ d = static_cast
(a_affecter.R_component_4()); \ \ return(*this); \ } \ \ quaternion
& operator = (quaternion
const & a_affecter) \ { \ a = a_affecter.a; \ b = a_affecter.b; \ c = a_affecter.c; \ d = a_affecter.d; \ \ return(*this); \ } \ \ quaternion
& operator = (type const & a_affecter) \ { \ a = a_affecter; \ \ b = c = d = static_cast
(0); \ \ return(*this); \ } \ \ quaternion
& operator = (::std::complex
const & a_affecter) \ { \ a = a_affecter.real(); \ b = a_affecter.imag(); \ \ c = d = static_cast
(0); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_DATA_GENERATOR(type) \ type a; \ type b; \ type c; \ type d; template
class quaternion { public: typedef T value_type; // constructor for H seen as R^4 // (also default constructor) explicit quaternion( T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T()) : a(requested_a), b(requested_b), c(requested_c), d(requested_d) { // nothing to do! } // constructor for H seen as C^2 explicit quaternion( ::std::complex
const & z0, ::std::complex
const & z1 = ::std::complex
()) : a(z0.real()), b(z0.imag()), c(z1.real()), d(z1.imag()) { // nothing to do! } // UNtemplated copy constructor // (this is taken care of by the compiler itself) // templated copy constructor template
explicit quaternion(quaternion
const & a_recopier) : a(static_cast
(a_recopier.R_component_1())), b(static_cast
(a_recopier.R_component_2())), c(static_cast
(a_recopier.R_component_3())), d(static_cast
(a_recopier.R_component_4())) { // nothing to do! } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(T) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(T) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" quaternion
& operator += (T const & rhs) { T at = a + rhs; // exception guard a = at; return(*this); } quaternion
& operator += (::std::complex
const & rhs) { T at = a + rhs.real(); // exception guard T bt = b + rhs.imag(); // exception guard a = at; b = bt; return(*this); } template
quaternion
& operator += (quaternion
const & rhs) { T at = a + static_cast
(rhs.R_component_1()); // exception guard T bt = b + static_cast
(rhs.R_component_2()); // exception guard T ct = c + static_cast
(rhs.R_component_3()); // exception guard T dt = d + static_cast
(rhs.R_component_4()); // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator -= (T const & rhs) { T at = a - rhs; // exception guard a = at; return(*this); } quaternion
& operator -= (::std::complex
const & rhs) { T at = a - rhs.real(); // exception guard T bt = b - rhs.imag(); // exception guard a = at; b = bt; return(*this); } template
quaternion
& operator -= (quaternion
const & rhs) { T at = a - static_cast
(rhs.R_component_1()); // exception guard T bt = b - static_cast
(rhs.R_component_2()); // exception guard T ct = c - static_cast
(rhs.R_component_3()); // exception guard T dt = d - static_cast
(rhs.R_component_4()); // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator *= (T const & rhs) { T at = a * rhs; // exception guard T bt = b * rhs; // exception guard T ct = c * rhs; // exception guard T dt = d * rhs; // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator *= (::std::complex
const & rhs) { T ar = rhs.real(); T br = rhs.imag(); T at = +a*ar-b*br; T bt = +a*br+b*ar; T ct = +c*ar+d*br; T dt = -c*br+d*ar; a = at; b = bt; c = ct; d = dt; return(*this); } template
quaternion
& operator *= (quaternion
const & rhs) { T ar = static_cast
(rhs.R_component_1()); T br = static_cast
(rhs.R_component_2()); T cr = static_cast
(rhs.R_component_3()); T dr = static_cast
(rhs.R_component_4()); T at = +a*ar-b*br-c*cr-d*dr; T bt = +a*br+b*ar+c*dr-d*cr; //(a*br+ar*b)+(c*dr-cr*d); T ct = +a*cr-b*dr+c*ar+d*br; //(a*cr+ar*c)+(d*br-dr*b); T dt = +a*dr+b*cr-c*br+d*ar; //(a*dr+ar*d)+(b*cr-br*c); a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator /= (T const & rhs) { T at = a / rhs; // exception guard T bt = b / rhs; // exception guard T ct = c / rhs; // exception guard T dt = d / rhs; // exception guard a = at; b = bt; c = ct; d = dt; return(*this); } quaternion
& operator /= (::std::complex
const & rhs) { T ar = rhs.real(); T br = rhs.imag(); T denominator = ar*ar+br*br; T at = (+a*ar+b*br)/denominator; //(a*ar+b*br)/denominator; T bt = (-a*br+b*ar)/denominator; //(ar*b-a*br)/denominator; T ct = (+c*ar-d*br)/denominator; //(ar*c-d*br)/denominator; T dt = (+c*br+d*ar)/denominator; //(ar*d+br*c)/denominator; a = at; b = bt; c = ct; d = dt; return(*this); } template
quaternion
& operator /= (quaternion
const & rhs) { T ar = static_cast
(rhs.R_component_1()); T br = static_cast
(rhs.R_component_2()); T cr = static_cast
(rhs.R_component_3()); T dr = static_cast
(rhs.R_component_4()); T denominator = ar*ar+br*br+cr*cr+dr*dr; T at = (+a*ar+b*br+c*cr+d*dr)/denominator; //(a*ar+b*br+c*cr+d*dr)/denominator; T bt = (-a*br+b*ar-c*dr+d*cr)/denominator; //((ar*b-a*br)+(cr*d-c*dr))/denominator; T ct = (-a*cr+b*dr+c*ar-d*br)/denominator; //((ar*c-a*cr)+(dr*b-d*br))/denominator; T dt = (-a*dr-b*cr+c*br+d*ar)/denominator; //((ar*d-a*dr)+(br*c-b*cr))/denominator; a = at; b = bt; c = ct; d = dt; return(*this); } protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(T) private: }; // declaration of quaternion specialization template<> class quaternion
; template<> class quaternion
; template<> class quaternion
; // helper templates for converting copy constructors (declaration) namespace detail { template< typename T, typename U > quaternion
quaternion_type_converter(quaternion
const & rhs); } // implementation of quaternion specialization #define BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(type) \ explicit quaternion( type const & requested_a = static_cast
(0), \ type const & requested_b = static_cast
(0), \ type const & requested_c = static_cast
(0), \ type const & requested_d = static_cast
(0)) \ : a(requested_a), \ b(requested_b), \ c(requested_c), \ d(requested_d) \ { \ } \ \ explicit quaternion( ::std::complex
const & z0, \ ::std::complex
const & z1 = ::std::complex
()) \ : a(z0.real()), \ b(z0.imag()), \ c(z1.real()), \ d(z1.imag()) \ { \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \ quaternion
& operator += (type const & rhs) \ { \ a += rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \ quaternion
& operator += (::std::complex
const & rhs) \ { \ a += rhs.real(); \ b += rhs.imag(); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type) \ template
\ quaternion
& operator += (quaternion
const & rhs) \ { \ a += static_cast
(rhs.R_component_1()); \ b += static_cast
(rhs.R_component_2()); \ c += static_cast
(rhs.R_component_3()); \ d += static_cast
(rhs.R_component_4()); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \ quaternion
& operator -= (type const & rhs) \ { \ a -= rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \ quaternion
& operator -= (::std::complex
const & rhs) \ { \ a -= rhs.real(); \ b -= rhs.imag(); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type) \ template
\ quaternion
& operator -= (quaternion
const & rhs) \ { \ a -= static_cast
(rhs.R_component_1()); \ b -= static_cast
(rhs.R_component_2()); \ c -= static_cast
(rhs.R_component_3()); \ d -= static_cast
(rhs.R_component_4()); \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \ quaternion
& operator *= (type const & rhs) \ { \ a *= rhs; \ b *= rhs; \ c *= rhs; \ d *= rhs; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \ quaternion
& operator *= (::std::complex
const & rhs) \ { \ type ar = rhs.real(); \ type br = rhs.imag(); \ \ type at = +a*ar-b*br; \ type bt = +a*br+b*ar; \ type ct = +c*ar+d*br; \ type dt = -c*br+d*ar; \ \ a = at; \ b = bt; \ c = ct; \ d = dt; \ \ return(*this); \ } #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type) \ template
\ quaternion
& operator *= (quaternion
const & rhs) \ { \ type ar = static_cast
(rhs.R_component_1()); \ type br = static_cast
(rhs.R_component_2()); \ type cr = static_cast
(rhs.R_component_3()); \ type dr = static_cast
(rhs.R_component_4()); \ \ type at = +a*ar-b*br-c*cr-d*dr; \ type bt = +a*br+b*ar+c*dr-d*cr; \ type ct = +a*cr-b*dr+c*ar+d*br; \ type dt = +a*dr+b*cr-c*br+d*ar; \ \ a = at; \ b = bt; \ c = ct; \ d = dt; \ \ return(*this); \ } // There is quite a lot of repetition in the code below. This is intentional. // The last conditional block is the normal form, and the others merely // consist of workarounds for various compiler deficiencies. Hopefuly, when // more compilers are conformant and we can retire support for those that are // not, we will be able to remove the clutter. This is makes the situation // (painfully) explicit. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \ quaternion
& operator /= (type const & rhs) \ { \ a /= rhs; \ b /= rhs; \ c /= rhs; \ d /= rhs; \ \ return(*this); \ } #if defined(__GNUC__) && (__GNUC__ < 3) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = (BOOST_GET_VALARRAY(type,static_cast
(1)/abs(tr)).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #elif defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ using ::std::abs; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #else #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ quaternion
& operator /= (::std::complex
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(2); \ \ tr[0] = rhs.real(); \ tr[1] = rhs.imag(); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]; \ tt[1] = -a*tr[1]+b*tr[0]; \ tt[2] = +c*tr[0]-d*tr[1]; \ tt[3] = +c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #endif /* defined(__GNUC__) && (__GNUC__ < 3) */ /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */ #if defined(__GNUC__) && (__GNUC__ < 3) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = (BOOST_GET_VALARRAY(type,static_cast
(1)/abs(tr)).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #elif defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ using ::std::abs; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #else #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \ template
\ quaternion
& operator /= (quaternion
const & rhs) \ { \ using ::std::valarray; \ \ valarray
tr(4); \ \ tr[0] = static_cast
(rhs.R_component_1()); \ tr[1] = static_cast
(rhs.R_component_2()); \ tr[2] = static_cast
(rhs.R_component_3()); \ tr[3] = static_cast
(rhs.R_component_4()); \ \ type mixam = static_cast
(1)/(abs(tr).max)(); \ \ tr *= mixam; \ \ valarray
tt(4); \ \ tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \ tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \ tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \ tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \ \ tr *= tr; \ \ tt *= (mixam/tr.sum()); \ \ a = tt[0]; \ b = tt[1]; \ c = tt[2]; \ d = tt[3]; \ \ return(*this); \ } #endif /* defined(__GNUC__) && (__GNUC__ < 3) */ /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */ #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) #define BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \ BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type) template<> class quaternion
{ public: typedef float value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(float) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // explicit copy constructors (precision-loosing converters) explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(float) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(float) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(float) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(float) private: }; template<> class quaternion
{ public: typedef double value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(double) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // converting copy constructor explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // explicit copy constructors (precision-loosing converters) explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(double) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(double) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(double) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(double) private: }; template<> class quaternion
{ public: typedef long double value_type; BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(long double) // UNtemplated copy constructor // (this is taken care of by the compiler itself) // converting copy constructors explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } explicit quaternion(quaternion
const & a_recopier) { *this = detail::quaternion_type_converter
(a_recopier); } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicallity, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). BOOST_QUATERNION_ACCESSOR_GENERATOR(long double) // assignment operators BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(long double) // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(long double) protected: BOOST_QUATERNION_MEMBER_DATA_GENERATOR(long double) private: }; #undef BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2 #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3 #undef BOOST_QUATERNION_CONSTRUCTOR_GENERATOR #undef BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR #undef BOOST_QUATERNION_MEMBER_DATA_GENERATOR #undef BOOST_QUATERNION_ACCESSOR_GENERATOR // operators #define BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) \ { \ quaternion
res(lhs); \ res op##= rhs; \ return(res); \ } #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \ template
\ inline quaternion
operator op (T const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, T const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \ template
\ inline quaternion
operator op (::std::complex
const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, ::std::complex
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR_3(op) \ template
\ inline quaternion
operator op (quaternion
const & lhs, quaternion
const & rhs) \ BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) #define BOOST_QUATERNION_OPERATOR_GENERATOR(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \ BOOST_QUATERNION_OPERATOR_GENERATOR_3(op) BOOST_QUATERNION_OPERATOR_GENERATOR(+) BOOST_QUATERNION_OPERATOR_GENERATOR(-) BOOST_QUATERNION_OPERATOR_GENERATOR(*) BOOST_QUATERNION_OPERATOR_GENERATOR(/) #undef BOOST_QUATERNION_OPERATOR_GENERATOR #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_L #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_R #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_L #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_R #undef BOOST_QUATERNION_OPERATOR_GENERATOR_3 #undef BOOST_QUATERNION_OPERATOR_GENERATOR_BODY template
inline quaternion
operator + (quaternion
const & q) { return(q); } template
inline quaternion
operator - (quaternion
const & q) { return(quaternion
(-q.R_component_1(),-q.R_component_2(),-q.R_component_3(),-q.R_component_4())); } template
inline bool operator == (T const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs)&& (rhs.R_component_2() == static_cast
(0))&& (rhs.R_component_3() == static_cast
(0))&& (rhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, T const & rhs) { return ( (lhs.R_component_1() == rhs)&& (lhs.R_component_2() == static_cast
(0))&& (lhs.R_component_3() == static_cast
(0))&& (lhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (::std::complex
const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs.real())&& (rhs.R_component_2() == lhs.imag())&& (rhs.R_component_3() == static_cast
(0))&& (rhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, ::std::complex
const & rhs) { return ( (lhs.R_component_1() == rhs.real())&& (lhs.R_component_2() == rhs.imag())&& (lhs.R_component_3() == static_cast
(0))&& (lhs.R_component_4() == static_cast
(0)) ); } template
inline bool operator == (quaternion
const & lhs, quaternion
const & rhs) { return ( (rhs.R_component_1() == lhs.R_component_1())&& (rhs.R_component_2() == lhs.R_component_2())&& (rhs.R_component_3() == lhs.R_component_3())&& (rhs.R_component_4() == lhs.R_component_4()) ); } #define BOOST_QUATERNION_NOT_EQUAL_GENERATOR \ { \ return(!(lhs == rhs)); \ } template
inline bool operator != (T const & lhs, quaternion
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, T const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (::std::complex
const & lhs, quaternion
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, ::std::complex
const & rhs) BOOST_QUATERNION_NOT_EQUAL_GENERATOR template
inline bool operator != (quaternion
const & lhs, quaternion