x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
deque.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\interprocess\containers\deque.hpp
Girar
Efecto
Propiedad
Historial
/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ ////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2006. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_deque.h and stl_uninitialized.h files. // Modified by Ion Gaztanaga 2005. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_DEQUE_HPP #define BOOST_INTERPROCESS_DEQUE_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { /// @cond template
class deque; // Note: this function is simply a kludge to work around several compilers' // bugs in handling constant expressions. inline std::size_t deque_buf_size(std::size_t size) { return size < 512 ? std::size_t(512 / size) : std::size_t(1); } // Deque base class. It has two purposes. First, its constructor // and destructor allocate (but don't initialize) storage. This makes // exception safety easier. template
class deque_base { public: typedef typename Alloc::value_type val_alloc_val; typedef typename Alloc::pointer val_alloc_ptr; typedef typename Alloc::const_pointer val_alloc_cptr; typedef typename Alloc::reference val_alloc_ref; typedef typename Alloc::const_reference val_alloc_cref; typedef typename Alloc::value_type val_alloc_diff; typedef typename Alloc::template rebind
::other ptr_alloc_t; typedef typename ptr_alloc_t::value_type ptr_alloc_val; typedef typename ptr_alloc_t::pointer ptr_alloc_ptr; typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr; typedef typename ptr_alloc_t::reference ptr_alloc_ref; typedef typename ptr_alloc_t::const_reference ptr_alloc_cref; typedef typename Alloc::template rebind
::other allocator_type; typedef allocator_type stored_allocator_type; protected: enum { trivial_dctr_after_move = boost::has_trivial_destructor
::value }; typedef typename Alloc::template rebind
::other map_allocator_type; val_alloc_ptr priv_allocate_node() { return this->alloc().allocate(deque_buf_size(sizeof(T))); } void priv_deallocate_node(val_alloc_ptr p) { this->alloc().deallocate(p, deque_buf_size(sizeof(T))); } ptr_alloc_ptr priv_allocate_map(std::size_t n) { return this->ptr_alloc().allocate(n); } void priv_deallocate_map(ptr_alloc_ptr p, std::size_t n) { this->ptr_alloc().deallocate(p, n); } public: // Class invariants: // For any nonsingular iterator i: // i.node is the address of an element in the map array. The // contents of i.node is a pointer to the beginning of a node. // i.first == //(i.node) // i.last == i.first + node_size // i.cur is a pointer in the range [i.first, i.last). NOTE: // the implication of this is that i.cur is always a dereferenceable // pointer, even if i is a past-the-end iterator. // Start and Finish are always nonsingular iterators. NOTE: this means // that an empty deque must have one node, and that a deque // with N elements, where N is the buffer size, must have two nodes. // For every node other than start.node and finish.node, every element // in the node is an initialized object. If start.node == finish.node, // then [start.cur, finish.cur) are initialized objects, and // the elements outside that range are uninitialized storage. Otherwise, // [start.cur, start.last) and [finish.first, finish.cur) are initialized // objects, and [start.first, start.cur) and [finish.cur, finish.last) // are uninitialized storage. // [map, map + map_size) is a valid, non-empty range. // [start.node, finish.node] is a valid range contained within // [map, map + map_size). // A pointer in the range [map, map + map_size) points to an allocated node // if and only if the pointer is in the range [start.node, finish.node]. class const_iterator : public std::iterator
{ public: static std::size_t s_buffer_size() { return deque_buf_size(sizeof(T)); } typedef std::random_access_iterator_tag iterator_category; typedef val_alloc_val value_type; typedef val_alloc_cptr pointer; typedef val_alloc_cref reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef ptr_alloc_ptr index_pointer; typedef const_iterator self_t; friend class deque
; friend class deque_base
; protected: val_alloc_ptr m_cur; val_alloc_ptr m_first; val_alloc_ptr m_last; index_pointer m_node; public: const_iterator(val_alloc_ptr x, index_pointer y) : m_cur(x), m_first(*y), m_last(*y + s_buffer_size()), m_node(y) {} const_iterator() : m_cur(0), m_first(0), m_last(0), m_node(0) {} const_iterator(const const_iterator& x) : m_cur(x.m_cur), m_first(x.m_first), m_last(x.m_last), m_node(x.m_node) {} reference operator*() const { return *this->m_cur; } pointer operator->() const { return this->m_cur; } difference_type operator-(const self_t& x) const { return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) + (this->m_cur - this->m_first) + (x.m_last - x.m_cur); } self_t& operator++() { ++this->m_cur; if (this->m_cur == this->m_last) { this->priv_set_node(this->m_node + 1); this->m_cur = this->m_first; } return *this; } self_t operator++(int) { self_t tmp = *this; ++*this; return tmp; } self_t& operator--() { if (this->m_cur == this->m_first) { this->priv_set_node(this->m_node - 1); this->m_cur = this->m_last; } --this->m_cur; return *this; } self_t operator--(int) { self_t tmp = *this; --*this; return tmp; } self_t& operator+=(difference_type n) { difference_type offset = n + (this->m_cur - this->m_first); if (offset >= 0 && offset < difference_type(this->s_buffer_size())) this->m_cur += n; else { difference_type node_offset = offset > 0 ? offset / difference_type(this->s_buffer_size()) : -difference_type((-offset - 1) / this->s_buffer_size()) - 1; this->priv_set_node(this->m_node + node_offset); this->m_cur = this->m_first + (offset - node_offset * difference_type(this->s_buffer_size())); } return *this; } self_t operator+(difference_type n) const { self_t tmp = *this; return tmp += n; } self_t& operator-=(difference_type n) { return *this += -n; } self_t operator-(difference_type n) const { self_t tmp = *this; return tmp -= n; } reference operator[](difference_type n) const { return *(*this + n); } bool operator==(const self_t& x) const { return this->m_cur == x.m_cur; } bool operator!=(const self_t& x) const { return !(*this == x); } bool operator<(const self_t& x) const { return (this->m_node == x.m_node) ? (this->m_cur < x.m_cur) : (this->m_node < x.m_node); } bool operator>(const self_t& x) const { return x < *this; } bool operator<=(const self_t& x) const { return !(x < *this); } bool operator>=(const self_t& x) const { return !(*this < x); } void priv_set_node(index_pointer new_node) { this->m_node = new_node; this->m_first = *new_node; this->m_last = this->m_first + difference_type(this->s_buffer_size()); } friend const_iterator operator+(std::ptrdiff_t n, const const_iterator& x) { return x + n; } }; //Deque iterator class iterator : public const_iterator { public: typedef std::random_access_iterator_tag iterator_category; typedef val_alloc_val value_type; typedef ptr_alloc_ptr pointer; typedef val_alloc_ref reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef ptr_alloc_ptr index_pointer; typedef const_iterator self_t; friend class deque
; friend class deque_base
; private: explicit iterator(const const_iterator& x) : const_iterator(x){} public: //Constructors iterator(val_alloc_ptr x, index_pointer y) : const_iterator(x, y){} iterator() : const_iterator(){} //iterator(const const_iterator &cit) : const_iterator(cit){} iterator(const iterator& x) : const_iterator(x){} //Pointer like operators reference operator*() const { return *this->m_cur; } pointer operator->() const { return this->m_cur; } reference operator[](difference_type n) const { return *(*this + n); } //Increment / Decrement iterator& operator++() { this->const_iterator::operator++(); return *this; } iterator operator++(int) { iterator tmp = *this; ++*this; return tmp; } iterator& operator--() { this->const_iterator::operator--(); return *this; } iterator operator--(int) { iterator tmp = *this; --*this; return tmp; } // Arithmetic iterator& operator+=(difference_type off) { this->const_iterator::operator+=(off); return *this; } iterator operator+(difference_type off) const { return iterator(this->const_iterator::operator+(off)); } friend iterator operator+(difference_type off, const iterator& right) { return iterator(off+static_cast
(right)); } iterator& operator-=(difference_type off) { this->const_iterator::operator-=(off); return *this; } iterator operator-(difference_type off) const { return iterator(this->const_iterator::operator-(off)); } difference_type operator-(const const_iterator& right) const { return static_cast
(*this) - right; } }; deque_base(const allocator_type& a, std::size_t num_elements) : members_(a) { this->priv_initialize_map(num_elements); } deque_base(const allocator_type& a) : members_(a) {} ~deque_base() { if (this->members_.m_map) { this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); } } protected: void priv_initialize_map(std::size_t num_elements) { std::size_t num_nodes = num_elements / deque_buf_size(sizeof(T)) + 1; this->members_.m_map_size = max_value((std::size_t) InitialMapSize, num_nodes + 2); this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size); ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2; ptr_alloc_ptr nfinish = nstart + num_nodes; BOOST_TRY { this->priv_create_nodes(nstart, nfinish); } BOOST_CATCH(...){ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = 0; this->members_.m_map_size = 0; BOOST_RETHROW } BOOST_CATCH_END this->members_.m_start.priv_set_node(nstart); this->members_.m_finish.priv_set_node(nfinish - 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; this->members_.m_finish.m_cur = this->members_.m_finish.m_first + num_elements % deque_buf_size(sizeof(T)); } void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) { ptr_alloc_ptr cur; BOOST_TRY { for (cur = nstart; cur < nfinish; ++cur) *cur = this->priv_allocate_node(); } BOOST_CATCH(...){ this->priv_destroy_nodes(nstart, cur); BOOST_RETHROW } BOOST_CATCH_END } void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) { for (ptr_alloc_ptr n = nstart; n < nfinish; ++n) this->priv_deallocate_node(*n); } enum { InitialMapSize = 8 }; protected: struct members_holder : public ptr_alloc_t , public allocator_type { members_holder(const allocator_type &a) : map_allocator_type(a), allocator_type(a) , m_map(0), m_map_size(0) , m_start(), m_finish() {} ptr_alloc_ptr m_map; std::size_t m_map_size; iterator m_start; iterator m_finish; } members_; ptr_alloc_t &ptr_alloc() { return members_; } const ptr_alloc_t &ptr_alloc() const { return members_; } allocator_type &alloc() { return members_; } const allocator_type &alloc() const { return members_; } }; /// @endcond //! Deque class //! template
class deque : protected deque_base
{ /// @cond typedef deque_base
Base; public: // Basic types typedef typename Alloc::value_type val_alloc_val; typedef typename Alloc::pointer val_alloc_ptr; typedef typename Alloc::const_pointer val_alloc_cptr; typedef typename Alloc::reference val_alloc_ref; typedef typename Alloc::const_reference val_alloc_cref; typedef typename Alloc::template rebind
::other ptr_alloc_t; typedef typename ptr_alloc_t::value_type ptr_alloc_val; typedef typename ptr_alloc_t::pointer ptr_alloc_ptr; typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr; typedef typename ptr_alloc_t::reference ptr_alloc_ref; typedef typename ptr_alloc_t::const_reference ptr_alloc_cref; /// @endcond typedef T value_type; typedef val_alloc_ptr pointer; typedef val_alloc_cptr const_pointer; typedef val_alloc_ref reference; typedef val_alloc_cref const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename Base::allocator_type allocator_type; public: // Iterators typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; typedef std::reverse_iterator
const_reverse_iterator; typedef std::reverse_iterator
reverse_iterator; /// @cond protected: // Internal typedefs typedef ptr_alloc_ptr index_pointer; static std::size_t s_buffer_size() { return deque_buf_size(sizeof(T)); } /// @endcond allocator_type get_allocator() const { return Base::alloc(); } public: // Basic accessors iterator begin() { return this->members_.m_start; } iterator end() { return this->members_.m_finish; } const_iterator begin() const { return this->members_.m_start; } const_iterator end() const { return this->members_.m_finish; } reverse_iterator rbegin() { return reverse_iterator(this->members_.m_finish); } reverse_iterator rend() { return reverse_iterator(this->members_.m_start); } const_reverse_iterator rbegin() const { return const_reverse_iterator(this->members_.m_finish); } const_reverse_iterator rend() const { return const_reverse_iterator(this->members_.m_start); } reference operator[](size_type n) { return this->members_.m_start[difference_type(n)]; } const_reference operator[](size_type n) const { return this->members_.m_start[difference_type(n)]; } void priv_range_check(size_type n) const { if (n >= this->size()) BOOST_RETHROW std::out_of_range("deque"); } reference at(size_type n) { this->priv_range_check(n); return (*this)[n]; } const_reference at(size_type n) const { this->priv_range_check(n); return (*this)[n]; } reference front() { return *this->members_.m_start; } reference back() { iterator tmp = this->members_.m_finish; --tmp; return *tmp; } const_reference front() const { return *this->members_.m_start; } const_reference back() const { const_iterator tmp = this->members_.m_finish; --tmp; return *tmp; } size_type size() const { return this->members_.m_finish - this->members_.m_start; } size_type max_size() const { return this->alloc().max_size(); } bool empty() const { return this->members_.m_finish == this->members_.m_start; } explicit deque(const allocator_type& a = allocator_type()) : Base(a, 0) {} deque(const deque& x) : Base(x.alloc(), x.size()) { std::uninitialized_copy(x.begin(), x.end(), this->members_.m_start); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE deque(const detail::moved_object
&mx) : Base(mx.get()) { this->swap(mx.get()); } #else deque(deque &&x) : Base(x)) { this->swap(x); } #endif deque(size_type n, const value_type& value, const allocator_type& a = allocator_type()) : Base(a, n) { this->priv_fill_initialize(value); } explicit deque(size_type n) : Base(allocator_type(), n) { this->resize(n); } // Check whether it's an integral type. If so, it's not an iterator. template
deque(InpIt first, InpIt last, const allocator_type& a = allocator_type()) : Base(a) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible
::value; typedef detail::bool_
Result; this->priv_initialize_dispatch(first, last, Result()); } ~deque() { priv_destroy_range(this->members_.m_start, this->members_.m_finish); } deque& operator= (const deque& x) { const size_type len = size(); if (&x != this) { if (len >= x.size()) this->erase(std::copy(x.begin(), x.end(), this->members_.m_start), this->members_.m_finish); else { const_iterator mid = x.begin() + difference_type(len); std::copy(x.begin(), mid, this->members_.m_start); this->insert(this->members_.m_finish, mid, x.end()); } } return *this; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE deque& operator= (const detail::moved_object
&mx) { this->clear(); this->swap(mx.get()); return *this; } #else deque& operator= (deque &&mx) { this->clear(); this->swap(mx); return *this; } #endif void swap(deque& x) { std::swap(this->members_.m_start, x.members_.m_start); std::swap(this->members_.m_finish, x.members_.m_finish); std::swap(this->members_.m_map, x.members_.m_map); std::swap(this->members_.m_map_size, x.members_.m_map_size); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
&mx) { this->swap(mx.get()); } #else void swap(deque &&mx) { this->swap(mx); } #endif void assign(size_type n, const T& val) { this->priv_fill_assign(n, val); } template
void assign(InpIt first, InpIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible
::value; typedef detail::bool_
Result; this->priv_assign_dispatch(first, last, Result()); } void push_back(const value_type& t) { if (this->members_.m_finish.m_cur != this->members_.m_finish.m_last - 1) { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(t); ++this->members_.m_finish.m_cur; } else this->priv_push_back_aux(t); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_back(const detail::moved_object
&mt) { if (this->members_.m_finish.m_cur != this->members_.m_finish.m_last - 1) { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(mt); ++this->members_.m_finish.m_cur; } else this->priv_push_back_aux(mt); } #else void push_back(value_type &&mt) { if (this->members_.m_finish.m_cur != this->members_.m_finish.m_last - 1) { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(move(mt)); ++this->members_.m_finish.m_cur; } else this->priv_push_back_aux(move(mt)); } #endif void push_front(const value_type& t) { if (this->members_.m_start.m_cur != this->members_.m_start.m_first) { new(detail::get_pointer(this->members_.m_start.m_cur)- 1)value_type(t); --this->members_.m_start.m_cur; } else this->priv_push_front_aux(t); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_front(const detail::moved_object
&mt) { if (this->members_.m_start.m_cur != this->members_.m_start.m_first) { new(detail::get_pointer(this->members_.m_start.m_cur)- 1)value_type(mt); --this->members_.m_start.m_cur; } else this->priv_push_front_aux(mt); } #else void push_front(value_type &&mt) { if (this->members_.m_start.m_cur != this->members_.m_start.m_first) { new(detail::get_pointer(this->members_.m_start.m_cur)- 1)value_type(move(mt)); --this->members_.m_start.m_cur; } else this->priv_push_front_aux(move(mt)); } #endif void pop_back() { if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) { --this->members_.m_finish.m_cur; detail::get_pointer(this->members_.m_finish.m_cur)->~value_type(); } else this->priv_pop_back_aux(); } void pop_front() { if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) { detail::get_pointer(this->members_.m_start.m_cur)->~value_type(); ++this->members_.m_start.m_cur; } else this->priv_pop_front_aux(); } iterator insert(iterator position, const value_type& x) { if (position.m_cur == this->members_.m_start.m_cur) { this->push_front(x); return this->members_.m_start; } else if (position.m_cur == this->members_.m_finish.m_cur) { this->push_back(x); iterator tmp = this->members_.m_finish; --tmp; return tmp; } else { return this->priv_insert_aux(position, x); } } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
&mx) { if (position.m_cur == this->members_.m_start.m_cur) { this->push_front(mx); return this->members_.m_start; } else if (position.m_cur == this->members_.m_finish.m_cur) { this->push_back(mx); iterator tmp = this->members_.m_finish; --tmp; return tmp; } else { return this->priv_insert_aux(position, mx); } } #else iterator insert(iterator position, value_type &&mx) { if (position.m_cur == this->members_.m_start.m_cur) { this->push_front(move(mx)); return this->members_.m_start; } else if (position.m_cur == this->members_.m_finish.m_cur) { this->push_back(move(mx)); iterator tmp = this->members_.m_finish; --tmp; return tmp; } else { return this->priv_insert_aux(position, move(mx)); } } #endif void insert(iterator pos, size_type n, const value_type& x) { this->priv_fill_insert(pos, n, x); } // Check whether it's an integral type. If so, it's not an iterator. template
void insert(iterator pos, InpIt first, InpIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible
::value; typedef detail::bool_
Result; this->priv_insert_dispatch(pos, first, last, Result()); } void resize(size_type new_size, const value_type& x) { const size_type len = size(); if (new_size < len) this->erase(this->members_.m_start + new_size, this->members_.m_finish); else this->insert(this->members_.m_finish, new_size - len, x); } void resize(size_type new_size) { const size_type len = size(); if (new_size < len) this->erase(this->members_.m_start + new_size, this->members_.m_finish); else{ size_type n = new_size - this->size(); this->priv_reserve_elements_at_back(new_size); while(n--){ //T default_constructed = move(T()); T default_constructed; /* if(boost::is_scalar
::value){ //Value initialization new(&default_constructed)T(); }*/ this->push_back(move(default_constructed)); } } } iterator erase(iterator pos) { iterator next = pos; ++next; difference_type index = pos - this->members_.m_start; if (size_type(index) < (this->size() >> 1)) { std::copy_backward( detail::make_move_iterator(this->members_.m_start) , detail::make_move_iterator(pos) , next); pop_front(); } else { std::copy( detail::make_move_iterator(next) , detail::make_move_iterator(this->members_.m_finish) , pos); pop_back(); } return this->members_.m_start + index; } iterator erase(iterator first, iterator last) { if (first == this->members_.m_start && last == this->members_.m_finish) { this->clear(); return this->members_.m_finish; } else { difference_type n = last - first; difference_type elems_before = first - this->members_.m_start; if (elems_before < static_cast
(this->size() - n) - elems_before) { std::copy_backward( detail::make_move_iterator(this->members_.m_start) , detail::make_move_iterator(first) , last); iterator new_start = this->members_.m_start + n; if(!Base::trivial_dctr_after_move) this->priv_destroy_range(this->members_.m_start, new_start); this->priv_destroy_nodes(new_start.m_node, this->members_.m_start.m_node); this->members_.m_start = new_start; } else { std::copy( detail::make_move_iterator(last) , detail::make_move_iterator(this->members_.m_finish) , first); iterator new_finish = this->members_.m_finish - n; if(!Base::trivial_dctr_after_move) this->priv_destroy_range(new_finish, this->members_.m_finish); this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1); this->members_.m_finish = new_finish; } return this->members_.m_start + elems_before; } } void clear() { for (index_pointer node = this->members_.m_start.m_node + 1; node < this->members_.m_finish.m_node; ++node) { this->priv_destroy_range(*node, *node + this->s_buffer_size()); this->priv_deallocate_node(*node); } if (this->members_.m_start.m_node != this->members_.m_finish.m_node) { this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last); this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur); this->priv_deallocate_node(this->members_.m_finish.m_first); } else this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur); this->members_.m_finish = this->members_.m_start; } /// @cond private: template
void insert(iterator pos, InpIt first, InpIt last, std::input_iterator_tag) { std::copy(first, last, std::inserter(*this, pos)); } template
void insert(iterator pos, FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type n = 0; n = std::distance(first, last); if (pos.m_cur == this->members_.m_start.m_cur) { iterator new_start = this->priv_reserve_elements_at_front(n); BOOST_TRY{ std::uninitialized_copy(first, last, new_start); this->members_.m_start = new_start; } BOOST_CATCH(...){ this->priv_destroy_nodes(new_start.m_node, this->members_.m_start.m_node); BOOST_RETHROW } BOOST_CATCH_END } else if (pos.m_cur == this->members_.m_finish.m_cur) { iterator new_finish = this->priv_reserve_elements_at_back(n); BOOST_TRY{ std::uninitialized_copy(first, last, this->members_.m_finish); this->members_.m_finish = new_finish; } BOOST_CATCH(...){ this->priv_destroy_nodes(this->members_.m_finish.m_node + 1, new_finish.m_node + 1); BOOST_RETHROW } BOOST_CATCH_END } else this->priv_insert_aux(pos, first, last, n); } // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void priv_fill_assign(size_type n, const T& val) { if (n > size()) { std::fill(begin(), end(), val); this->insert(end(), n - size(), val); } else { this->erase(begin() + n, end()); std::fill(begin(), end(), val); } } template
void priv_initialize_dispatch(Integer n, Integer x, detail::true_) { this->priv_initialize_map(n); this->priv_fill_initialize(x); } template
void priv_initialize_dispatch(InpIt first, InpIt last, detail::false_) { typedef typename std::iterator_traits
::iterator_category ItCat; this->priv_range_initialize(first, last, ItCat()); } void priv_destroy_range(iterator p, iterator p2) { for(;p != p2; ++p) detail::get_pointer(&*p)->~value_type(); } void priv_destroy_range(pointer p, pointer p2) { for(;p != p2; ++p) detail::get_pointer(&*p)->~value_type(); } template
void priv_assign_dispatch(Integer n, Integer val, detail::true_) { this->priv_fill_assign((size_type) n, (T) val); } template
void priv_assign_dispatch(InpIt first, InpIt last, detail::false_) { typedef typename std::iterator_traits
::iterator_category ItCat; this->priv_assign_aux(first, last, ItCat()); } template
void priv_assign_aux(InpIt first, InpIt last, std::input_iterator_tag) { iterator cur = begin(); for ( ; first != last && cur != end(); ++cur, ++first) *cur = *first; if (first == last) this->erase(cur, end()); else this->insert(end(), first, last); } template
void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type len = 0; std::distance(first, last, len); if (len > size()) { FwdIt mid = first; std::advance(mid, size()); std::copy(first, mid, begin()); this->insert(end(), mid, last); } else this->erase(std::copy(first, last, begin()), end()); } template
void priv_insert_dispatch(iterator pos, Integer n, Integer x, detail::true_) { this->priv_fill_insert(pos, (size_type) n, (value_type) x); } template
void priv_insert_dispatch(iterator pos, InpIt first, InpIt last, detail::false_) { typedef typename std::iterator_traits
::iterator_category ItCat; this->insert(pos, first, last, ItCat()); } iterator priv_insert_aux(iterator pos, const value_type& x) { size_type n = pos - begin(); this->priv_insert_aux(pos, size_type(1), x); return iterator(this->begin() + n); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator priv_insert_aux(iterator pos, const detail::moved_object
&mx) { typedef repeat_iterator
r_iterator; typedef detail::move_iterator
move_it; //Just call more general insert(pos, size, value) and return iterator size_type n = pos - begin(); this->insert(pos ,move_it(r_iterator(mx.get(), 1)) ,move_it(r_iterator())); return iterator(this->begin() + n); } #else iterator priv_insert_aux(iterator pos, value_type &&mx) { typedef repeat_iterator
r_iterator; typedef detail::move_iterator
move_it; //Just call more general insert(pos, size, value) and return iterator size_type n = pos - begin(); this->insert(pos ,move_it(r_iterator(mx, 1)) ,move_it(r_iterator())); return iterator(this->begin() + n); } #endif void priv_insert_aux(iterator pos, size_type n, const value_type& x) { typedef constant_iterator
c_it; this->insert(pos, c_it(x, n), c_it()); } template
void priv_insert_aux(iterator pos, FwdIt first, FwdIt last, size_type n) { const difference_type elemsbefore = pos - this->members_.m_start; size_type length = size(); if (elemsbefore < static_cast
(length / 2)) { iterator new_start = this->priv_reserve_elements_at_front(n); iterator old_start = this->members_.m_start; pos = this->members_.m_start + elemsbefore; BOOST_TRY { if (elemsbefore >= difference_type(n)) { iterator start_n = this->members_.m_start + difference_type(n); std::uninitialized_copy(detail::make_move_iterator(this->members_.m_start), detail::make_move_iterator(start_n), new_start); this->members_.m_start = new_start; std::copy(detail::make_move_iterator(start_n), detail::make_move_iterator(pos), old_start); std::copy(first, last, pos - difference_type(n)); } else { FwdIt mid = first; std::advance(mid, difference_type(n) - elemsbefore); this->priv_uninitialized_copy_copy (detail::make_move_iterator(this->members_.m_start), detail::make_move_iterator(pos), first, mid, new_start); this->members_.m_start = new_start; std::copy(mid, last, old_start); } } BOOST_CATCH(...){ this->priv_destroy_nodes(new_start.m_node, this->members_.m_start.m_node); BOOST_RETHROW } BOOST_CATCH_END } else { iterator new_finish = this->priv_reserve_elements_at_back(n); iterator old_finish = this->members_.m_finish; const difference_type elemsafter = difference_type(length) - elemsbefore; pos = this->members_.m_finish - elemsafter; BOOST_TRY { if (elemsafter > difference_type(n)) { iterator finish_n = this->members_.m_finish - difference_type(n); std::uninitialized_copy(detail::make_move_iterator(finish_n), detail::make_move_iterator(this->members_.m_finish), this->members_.m_finish); this->members_.m_finish = new_finish; std::copy_backward(detail::make_move_iterator(pos), detail::make_move_iterator(finish_n), old_finish); std::copy(first, last, pos); } else { FwdIt mid = first; std::advance(mid, elemsafter); this->priv_uninitialized_copy_copy(mid, last, detail::make_move_iterator(pos), detail::make_move_iterator(this->members_.m_finish), this->members_.m_finish); this->members_.m_finish = new_finish; std::copy(first, mid, pos); } } BOOST_CATCH(...){ this->priv_destroy_nodes(this->members_.m_finish.m_node + 1, new_finish.m_node + 1); BOOST_RETHROW } BOOST_CATCH_END } } void priv_fill_insert(iterator pos, size_type n, const value_type& x) { typedef constant_iterator
c_it; this->insert(pos, c_it(x, n), c_it()); } // Precondition: this->members_.m_start and this->members_.m_finish have already been initialized, // but none of the deque's elements have yet been constructed. void priv_fill_initialize(const value_type& value) { index_pointer cur; BOOST_TRY { for (cur = this->members_.m_start.m_node; cur < this->members_.m_finish.m_node; ++cur){ std::uninitialized_fill(*cur, *cur + this->s_buffer_size(), value); } std::uninitialized_fill(this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur)); BOOST_RETHROW } BOOST_CATCH_END } template
void priv_range_initialize(InpIt first, InpIt last, std::input_iterator_tag) { this->priv_initialize_map(0); BOOST_TRY { for ( ; first != last; ++first) this->push_back(*first); } BOOST_CATCH(...){ this->clear(); BOOST_RETHROW } BOOST_CATCH_END } template
void priv_range_initialize(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type n = 0; n = std::distance(first, last); this->priv_initialize_map(n); index_pointer cur_node; BOOST_TRY { for (cur_node = this->members_.m_start.m_node; cur_node < this->members_.m_finish.m_node; ++cur_node) { FwdIt mid = first; std::advance(mid, this->s_buffer_size()); std::uninitialized_copy(first, mid, *cur_node); first = mid; } std::uninitialized_copy(first, last, this->members_.m_finish.m_first); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node)); BOOST_RETHROW } BOOST_CATCH_END } // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_last - 1. void priv_push_back_aux(const value_type& t = value_type()) { this->priv_reserve_map_at_back(); *(this->members_.m_finish.m_node + 1) = this->priv_allocate_node(); BOOST_TRY { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(t); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node + 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_first; } BOOST_CATCH(...){ this->priv_deallocate_node(*(this->members_.m_finish.m_node + 1)); BOOST_RETHROW } BOOST_CATCH_END } // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_last - 1. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void priv_push_back_aux(const detail::moved_object
&mt) { this->priv_reserve_map_at_back(); *(this->members_.m_finish.m_node + 1) = this->priv_allocate_node(); BOOST_TRY { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(mt); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node + 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_first; } BOOST_CATCH(...){ this->priv_deallocate_node(*(this->members_.m_finish.m_node + 1)); BOOST_RETHROW } BOOST_CATCH_END } #else void priv_push_back_aux(value_type &&mt) { this->priv_reserve_map_at_back(); *(this->members_.m_finish.m_node + 1) = this->priv_allocate_node(); BOOST_TRY { new(detail::get_pointer(this->members_.m_finish.m_cur))value_type(move(mt)); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node + 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_first; } BOOST_CATCH(...){ this->priv_deallocate_node(*(this->members_.m_finish.m_node + 1)); BOOST_RETHROW } BOOST_CATCH_END } #endif // Called only if this->members_.m_start.m_cur == this->members_.m_start.m_first. void priv_push_front_aux(const value_type& t) { this->priv_reserve_map_at_front(); *(this->members_.m_start.m_node - 1) = this->priv_allocate_node(); BOOST_TRY { this->members_.m_start.priv_set_node(this->members_.m_start.m_node - 1); this->members_.m_start.m_cur = this->members_.m_start.m_last - 1; new(detail::get_pointer(this->members_.m_start.m_cur))value_type(t); } BOOST_CATCH(...){ ++this->members_.m_start; this->priv_deallocate_node(*(this->members_.m_start.m_node - 1)); BOOST_RETHROW } BOOST_CATCH_END } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void priv_push_front_aux(const detail::moved_object
&mt) { this->priv_reserve_map_at_front(); *(this->members_.m_start.m_node - 1) = this->priv_allocate_node(); BOOST_TRY { this->members_.m_start.priv_set_node(this->members_.m_start.m_node - 1); this->members_.m_start.m_cur = this->members_.m_start.m_last - 1; new(detail::get_pointer(this->members_.m_start.m_cur))value_type(mt); } BOOST_CATCH(...){ ++this->members_.m_start; this->priv_deallocate_node(*(this->members_.m_start.m_node - 1)); BOOST_RETHROW } BOOST_CATCH_END } #else void priv_push_front_aux(value_type &&mt) { this->priv_reserve_map_at_front(); *(this->members_.m_start.m_node - 1) = this->priv_allocate_node(); BOOST_TRY { this->members_.m_start.priv_set_node(this->members_.m_start.m_node - 1); this->members_.m_start.m_cur = this->members_.m_start.m_last - 1; new(detail::get_pointer(this->members_.m_start.m_cur))value_type(move(mt)); } BOOST_CATCH(...){ ++this->members_.m_start; this->priv_deallocate_node(*(this->members_.m_start.m_node - 1)); BOOST_RETHROW } BOOST_CATCH_END } #endif // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first. void priv_pop_back_aux() { this->priv_deallocate_node(this->members_.m_finish.m_first); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1; detail::get_pointer(this->members_.m_finish.m_cur)->~value_type(); } // Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that // if the deque has at least one element (a precondition for this member // function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque // must have at least two nodes. void priv_pop_front_aux() { detail::get_pointer(this->members_.m_start.m_cur)->~value_type(); this->priv_deallocate_node(this->members_.m_start.m_first); this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; } iterator priv_reserve_elements_at_front(size_type n) { size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first; if (n > vacancies) this->priv_new_elements_at_front(n - vacancies); return this->members_.m_start - difference_type(n); } iterator priv_reserve_elements_at_back(size_type n) { size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1; if (n > vacancies) this->priv_new_elements_at_back(n - vacancies); return this->members_.m_finish + difference_type(n); } void priv_new_elements_at_front(size_type new_elems) { size_type new_nodes = (new_elems + this->s_buffer_size() - 1) / this->s_buffer_size(); this->priv_reserve_map_at_front(new_nodes); size_type i = 1; BOOST_TRY { for (; i <= new_nodes; ++i) *(this->members_.m_start.m_node - i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_start.m_node - j)); BOOST_RETHROW } BOOST_CATCH_END } void priv_new_elements_at_back(size_type new_elems) { size_type new_nodes = (new_elems + this->s_buffer_size() - 1) / this->s_buffer_size(); this->priv_reserve_map_at_back(new_nodes); size_type i; BOOST_TRY { for (i = 1; i <= new_nodes; ++i) *(this->members_.m_finish.m_node + i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_finish.m_node + j)); BOOST_RETHROW } BOOST_CATCH_END } // Makes sure the this->members_.m_map has space for new nodes. Does not actually // add the nodes. Can invalidate this->members_.m_map pointers. (And consequently, // deque iterators.) void priv_reserve_map_at_back (size_type nodes_to_add = 1) { if (nodes_to_add + 1 > this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map)) this->priv_reallocate_map(nodes_to_add, false); } void priv_reserve_map_at_front (size_type nodes_to_add = 1) { if (nodes_to_add > size_type(this->members_.m_start.m_node - this->members_.m_map)) this->priv_reallocate_map(nodes_to_add, true); } void priv_reallocate_map(size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1; size_type new_num_nodes = old_num_nodes + nodes_to_add; index_pointer new_nstart; if (this->members_.m_map_size > 2 * new_num_nodes) { new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); if (new_nstart < this->members_.m_start.m_node) std::copy(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); else std::copy_backward(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes); } else { size_type new_map_size = this->members_.m_map_size + max_value(this->members_.m_map_size, nodes_to_add) + 2; index_pointer new_map = this->priv_allocate_map(new_map_size); new_nstart = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); std::copy(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = new_map; this->members_.m_map_size = new_map_size; } this->members_.m_start.priv_set_node(new_nstart); this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1); } // this->priv_uninitialized_copy_fill // Copies [first1, last1) into [first2, first2 + (last1 - first1)), and // fills [first2 + (last1 - first1), last2) with x. void priv_uninitialized_copy_fill(iterator first1, iterator last1, iterator first2, iterator last2, const T& x) { iterator mid2 = std::uninitialized_copy(first1, last1, first2); BOOST_TRY { std::uninitialized_fill(mid2, last2, x); } BOOST_CATCH(...){ for(;first2 != mid2; ++first2){ detail::get_pointer(&*first2)->~value_type(); } BOOST_RETHROW } BOOST_CATCH_END } // this->priv_uninitialized_fill_copy // Fills [result, mid) with x, and copies [first, last) into // [mid, mid + (last - first)). iterator priv_uninitialized_fill_copy(iterator result, iterator mid, const T& x, iterator first, iterator last) { std::uninitialized_fill(result, mid, x); BOOST_TRY { return std::uninitialized_copy(first, last, mid); } BOOST_CATCH(...){ for(;result != mid; ++result){ detail::get_pointer(&*result)->~value_type(); } BOOST_RETHROW } BOOST_CATCH_END } // this->priv_uninitialized_copy_copy // Copies [first1, last1) into [result, result + (last1 - first1)), and // copies [first2, last2) into // [result, result + (last1 - first1) + (last2 - first2)). template
FwdIt priv_uninitialized_copy_copy(InpIt1 first1, InpIt1 last1, InpIt2 first2, InpIt2 last2, FwdIt result) { FwdIt mid = std::uninitialized_copy(first1, last1, result); BOOST_TRY { return std::uninitialized_copy(first2, last2, mid); } BOOST_CATCH(...){ for(;result != mid; ++result){ detail::get_pointer(&*result)->~value_type(); } BOOST_RETHROW } BOOST_CATCH_END } /// @endcond }; // Nonmember functions. template
inline bool operator==(const deque
& x, const deque
& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template
inline bool operator<(const deque
& x, const deque
& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template
inline bool operator!=(const deque
& x, const deque
& y) { return !(x == y); } template
inline bool operator>(const deque
& x, const deque
& y) { return y < x; } template
inline bool operator<=(const deque
& x, const deque
& y) { return !(y < x); } template
inline bool operator>=(const deque
& x, const deque
& y) { return !(x < y); } template
inline void swap(deque
& x, deque
& y) { x.swap(y); } /// @cond //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value }; }; /// @endcond } //namespace interprocess { } //namespace boost { #include
#endif // #ifndef BOOST_INTERPROCESS_DEQUE_HPP
deque.hpp
Dirección de la página
Dirección del archivo
Anterior 1/9
Siguiente
Descargar
( 55 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.