x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
vector.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\interprocess\containers\vector.hpp
Girar
Efecto
Propiedad
Historial
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_vector.h file. Modified by Ion Gaztanaga. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// // Copyright (c) 1994 // Hewlett-Packard Company // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Hewlett-Packard Company makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. // // // Copyright (c) 1996 // Silicon Graphics Computer Systems, Inc. // // Permission to use, copy, modify, distribute and sell this software // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies and // that both that copyright notice and this permission notice appear // in supporting documentation. Silicon Graphics makes no // representations about the suitability of this software for any // purpose. It is provided "as is" without express or implied warranty. #ifndef BOOST_INTERPROCESS_VECTOR_HPP #define BOOST_INTERPROCESS_VECTOR_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { /// @cond namespace detail { //! Const vector_iterator used to iterate through a vector. template
class vector_const_iterator : public std::iterator
::value_type ,typename std::iterator_traits
::difference_type ,typename pointer_to_other
::value_type >::type ,const typename std::iterator_traits
::value_type &> { public: typedef const typename std::iterator_traits
::value_type value_type; typedef typename std::iterator_traits
::difference_type difference_type; typedef typename pointer_to_other
::type pointer; typedef value_type& reference; /// @cond protected: Pointer m_ptr; public: Pointer get_ptr() const { return m_ptr; } explicit vector_const_iterator(Pointer ptr) : m_ptr(ptr){} /// @endcond public: //Constructors vector_const_iterator() : m_ptr(0){} //Pointer like operators reference operator*() const { return *m_ptr; } const value_type * operator->() const { return detail::get_pointer(m_ptr); } reference operator[](difference_type off) const { return m_ptr[off]; } //Increment / Decrement vector_const_iterator& operator++() { ++m_ptr; return *this; } vector_const_iterator operator++(int) { Pointer tmp = m_ptr; ++*this; return vector_const_iterator(tmp); } vector_const_iterator& operator--() { --m_ptr; return *this; } vector_const_iterator operator--(int) { Pointer tmp = m_ptr; --*this; return vector_const_iterator(tmp); } //Arithmetic vector_const_iterator& operator+=(difference_type off) { m_ptr += off; return *this; } vector_const_iterator operator+(difference_type off) const { return vector_const_iterator(m_ptr+off); } friend vector_const_iterator operator+(difference_type off, const vector_const_iterator& right) { return vector_const_iterator(off + right.m_ptr); } vector_const_iterator& operator-=(difference_type off) { m_ptr -= off; return *this; } vector_const_iterator operator-(difference_type off) const { return vector_const_iterator(m_ptr-off); } difference_type operator-(const vector_const_iterator& right) const { return m_ptr - right.m_ptr; } //Comparison operators bool operator== (const vector_const_iterator& r) const { return m_ptr == r.m_ptr; } bool operator!= (const vector_const_iterator& r) const { return m_ptr != r.m_ptr; } bool operator< (const vector_const_iterator& r) const { return m_ptr < r.m_ptr; } bool operator<= (const vector_const_iterator& r) const { return m_ptr <= r.m_ptr; } bool operator> (const vector_const_iterator& r) const { return m_ptr > r.m_ptr; } bool operator>= (const vector_const_iterator& r) const { return m_ptr >= r.m_ptr; } }; //! Iterator used to iterate through a vector template
class vector_iterator : public vector_const_iterator
{ public: explicit vector_iterator(Pointer ptr) : vector_const_iterator
(ptr) {} public: typedef typename std::iterator_traits
::value_type value_type; typedef typename vector_const_iterator
::difference_type difference_type; typedef Pointer pointer; typedef value_type& reference; //Constructors vector_iterator() {} //Pointer like operators reference operator*() const { return *this->m_ptr; } value_type* operator->() const { return detail::get_pointer(this->m_ptr); } reference operator[](difference_type off) const { return this->m_ptr[off]; } //Increment / Decrement vector_iterator& operator++() { ++this->m_ptr; return *this; } vector_iterator operator++(int) { pointer tmp = this->m_ptr; ++*this; return vector_iterator(tmp); } vector_iterator& operator--() { --this->m_ptr; return *this; } vector_iterator operator--(int) { vector_iterator tmp = *this; --*this; return vector_iterator(tmp); } // Arithmetic vector_iterator& operator+=(difference_type off) { this->m_ptr += off; return *this; } vector_iterator operator+(difference_type off) const { return vector_iterator(this->m_ptr+off); } friend vector_iterator operator+(difference_type off, const vector_iterator& right) { return vector_iterator(off + right.m_ptr); } vector_iterator& operator-=(difference_type off) { this->m_ptr -= off; return *this; } vector_iterator operator-(difference_type off) const { return vector_iterator(this->m_ptr-off); } difference_type operator-(const vector_const_iterator
& right) const { return static_cast
&>(*this) - right; } }; //!This struct deallocates and allocated memory template
struct vector_alloc_holder { typedef typename A::pointer pointer; typedef typename A::size_type size_type; typedef typename A::value_type value_type; static const bool trivial_dctr = boost::has_trivial_destructor
::value; static const bool trivial_dctr_after_move = has_trivial_destructor_after_move
::value || trivial_dctr; static const bool trivial_copy = has_trivial_copy
::value; static const bool nothrow_copy = has_nothrow_copy
::value; static const bool trivial_assign = has_trivial_assign
::value; static const bool nothrow_assign = has_nothrow_assign
::value; //Constructor, does not throw vector_alloc_holder(const A &a) : members_(a) {} //Constructor, does not throw vector_alloc_holder(const vector_alloc_holder
&h) : members_(h.alloc()) {} //Destructor ~vector_alloc_holder() { this->prot_deallocate(); } typedef detail::integral_constant
allocator_v1; typedef detail::integral_constant
allocator_v2; typedef detail::integral_constant
::value> alloc_version; std::pair
allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse = 0) { return allocation_command(command, limit_size, preferred_size, received_size, reuse, alloc_version()); } std::pair
allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse, allocator_v1) { (void)limit_size; (void)reuse; if(!(command & allocate_new)) return std::pair
(0, 0); received_size = preferred_size; return std::make_pair(this->alloc().allocate(received_size), false); } std::pair
allocation_command(allocation_type command, size_type limit_size, size_type preferred_size, size_type &received_size, const pointer &reuse, allocator_v2) { return this->alloc().allocation_command(command, limit_size, preferred_size, received_size, reuse); } size_type next_capacity(size_type additional_objects) const { return get_next_capacity(this->alloc().max_size(), this->members_.m_capacity, additional_objects); } struct members_holder : public A { private: members_holder(const members_holder&); public: members_holder(const A &alloc) : A(alloc), m_start(0), m_size(0), m_capacity(0) {} pointer m_start; size_type m_size; size_type m_capacity; } members_; protected: void prot_deallocate() { if(!this->members_.m_capacity) return; this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); this->members_.m_start = 0; this->members_.m_size = 0; this->members_.m_capacity = 0; } void destroy(value_type* p) { if(!trivial_dctr) detail::get_pointer(p)->~value_type(); } void destroy_n(value_type* p, size_type n) { if(!trivial_dctr) for(; n--; ++p) p->~value_type(); } A &alloc() { return members_; } const A &alloc() const { return members_; } }; } //namespace detail { /// @endcond //! A vector is a sequence that supports random access to elements, constant //! time insertion and removal of elements at the end, and linear time insertion //! and removal of elements at the beginning or in the middle. The number of //! elements in a vector may vary dynamically; memory management is automatic. //! boost::interprocess::vector is similar to std::vector but it's compatible //! with shared memory and memory mapped files. template
class vector : private detail::vector_alloc_holder
{ /// @cond typedef vector
self_t; typedef detail::vector_alloc_holder
base_t; /// @endcond public: //! The type of object, T, stored in the vector typedef T value_type; //! Pointer to T typedef typename A::pointer pointer; //! Const pointer to T typedef typename A::const_pointer const_pointer; //! Reference to T typedef typename A::reference reference; //! Const reference to T typedef typename A::const_reference const_reference; //! An unsigned integral type typedef typename A::size_type size_type; //! A signed integral type typedef typename A::difference_type difference_type; //! The allocator type typedef A allocator_type; //! The random access iterator typedef detail::vector_iterator
iterator; //! The random access const_iterator typedef detail::vector_const_iterator
const_iterator; //! Iterator used to iterate backwards through a vector. typedef std::reverse_iterator
reverse_iterator; //! Const iterator used to iterate backwards through a vector. typedef std::reverse_iterator
const_reverse_iterator; //! The stored allocator type typedef allocator_type stored_allocator_type; /// @cond private: typedef typename base_t::allocator_v1 allocator_v1; typedef typename base_t::allocator_v2 allocator_v2; typedef typename base_t::alloc_version alloc_version; typedef constant_iterator
cvalue_iterator; typedef repeat_iterator
repeat_it; typedef detail::move_iterator
repeat_move_it; //This is the anti-exception array destructor //to deallocate values already constructed typedef typename detail::if_c
,detail::scoped_destructor_n
>::type OldArrayDestructor; //This is the anti-exception array destructor //to destroy objects created with copy construction typedef typename detail::if_c
,detail::scoped_destructor_n
>::type UCopiedArrayDestructor; //This is the anti-exception array deallocator typedef typename detail::if_c
,detail::scoped_array_deallocator
>::type UCopiedArrayDeallocator; //This is the optimized move iterator for copy constructors //so that std::copy and similar can use memcpy typedef typename detail::if_c
>::type copy_move_it; //This is the optimized move iterator for assignments //so that std::uninitialized_copy and similar can use memcpy typedef typename detail::if_c
>::type assign_move_it; /// @endcond public: //!
Effects
: Constructs a vector taking the allocator as parameter. //! //!
Throws
: If allocator_type's copy constructor throws. //! //!
Complexity
: Constant. explicit vector(const A& a = A()) : base_t(a) {} //!
Effects
: Constructs a vector that will use a copy of allocator a //! and inserts n copies of value. //! //!
Throws
: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //!
Complexity
: Linear to n. vector(size_type n, const T& value = T(), const allocator_type& a = allocator_type()) : base_t(a) { this->insert(this->end(), n, value); } //!
Effects
: Copy constructs a vector. //! //!
Postcondition
: x == *this. //! //!
Complexity
: Linear to the elements x contains. vector(const vector
& x) : base_t((base_t&)x) { *this = x; } //!
Effects
: Move constructor. Moves mx's resources to *this. //! //!
Throws
: If allocator_type's copy constructor throws. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE vector(const detail::moved_object
>& mx) : base_t(mx.get()) { this->swap(mx.get()); } #else vector(vector
&& mx) : base_t(mx) { this->swap(mx); } #endif //!
Effects
: Constructs a vector that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the vector. //! //!
Throws
: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //!
Complexity
: Linear to the range [first, last). template
vector(InIt first, InIt last, const allocator_type& a = allocator_type()) : base_t(a) { this->assign(first, last); } //!
Effects
: Destroys the vector. All stored values are destroyed //! and used memory is deallocated. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the number of elements. ~vector() { this->priv_destroy_all(); } //!
Effects
: Returns an iterator to the first element contained in the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return iterator(this->members_.m_start); } //!
Effects
: Returns a const_iterator to the first element contained in the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return const_iterator(this->members_.m_start); } //!
Effects
: Returns an iterator to the end of the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return iterator(this->members_.m_start + this->members_.m_size); } //!
Effects
: Returns a const_iterator to the end of the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return const_iterator(this->members_.m_start + this->members_.m_size); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return reverse_iterator(this->end()); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin()const { return const_reverse_iterator(this->end());} //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return reverse_iterator(this->begin()); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return const_reverse_iterator(this->begin()); } //!
Requires
: !empty() //! //!
Effects
: Returns a reference to the first element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reference front() { return *this->members_.m_start; } //!
Requires
: !empty() //! //!
Effects
: Returns a const reference to the first element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reference front() const { return *this->members_.m_start; } //!
Requires
: !empty() //! //!
Effects
: Returns a reference to the first element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reference back() { return this->members_.m_start[this->members_.m_size - 1]; } //!
Requires
: !empty() //! //!
Effects
: Returns a const reference to the first element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reference back() const { return this->members_.m_start[this->members_.m_size - 1]; } //!
Effects
: Returns the number of the elements contained in the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return this->members_.m_size; } //!
Effects
: Returns the largest possible size of the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return this->alloc().max_size(); } //!
Effects
: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type capacity() const { return this->members_.m_capacity; } //!
Effects
: Returns true if the vector contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return !this->members_.m_size; } //!
Requires
: size() < n. //! //!
Effects
: Returns a reference to the nth element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reference operator[](size_type n) { return this->members_.m_start[n]; } //!
Requires
: size() < n. //! //!
Effects
: Returns a const reference to the nth element //! from the beginning of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reference operator[](size_type n) const { return this->members_.m_start[n]; } //!
Requires
: size() < n. //! //!
Effects
: Returns a reference to the nth element //! from the beginning of the container. //! //!
Throws
: std::range_error if n >= size() //! //!
Complexity
: Constant. reference at(size_type n) { this->priv_check_range(n); return this->members_.m_start[n]; } //!
Requires
: size() < n. //! //!
Effects
: Returns a const reference to the nth element //! from the beginning of the container. //! //!
Throws
: std::range_error if n >= size() //! //!
Complexity
: Constant. const_reference at(size_type n) const { this->priv_check_range(n); return this->members_.m_start[n]; } //!
Effects
: Returns a copy of the internal allocator. //! //!
Throws
: If allocator's copy constructor throws. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return this->alloc(); } const stored_allocator_type &get_stored_allocator() const { return this->alloc(); } stored_allocator_type &get_stored_allocator() { return this->alloc(); } //!
Effects
: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //!
Throws
: If memory allocation allocation throws or T's copy constructor throws. void reserve(size_type new_cap) { if (this->capacity() < new_cap){ //There is not enough memory, allocate a new //buffer or expand the old one. bool same_buffer_start; size_type real_cap = 0; std::pair
ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, new_cap, new_cap, real_cap, this->members_.m_start); //Check for forward expansion same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->members_.m_capacity = real_cap; } //If there is no forward expansion, move objects else{ //We will reuse insert code, so create a dummy input iterator copy_move_it dummy_it(detail::get_pointer(this->members_.m_start)); //Backwards (and possibly forward) expansion if(ret.second){ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_range_insert_expand_backwards ( detail::get_pointer(ret.first) , real_cap , detail::get_pointer(this->members_.m_start) , dummy_it , dummy_it , 0); } //New buffer else{ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_range_insert_new_allocation ( detail::get_pointer(ret.first) , real_cap , detail::get_pointer(this->members_.m_start) , dummy_it , dummy_it); } } } } //!
Effects
: Makes *this contain the same elements as x. //! //!
Postcondition
: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //!
Throws
: If memory allocation throws or T's copy constructor throws. //! //!
Complexity
: Linear to the number of elements in x. vector
& operator=(const vector
& x) { if (&x != this){ this->assign(x.members_.m_start, x.members_.m_start + x.members_.m_size); } return *this; } //!
Effects
: Move assignment. All mx's values are transferred to *this. //! //!
Postcondition
: x.empty(). *this contains a the elements x had //! before the function. //! //!
Throws
: If allocator_type's copy constructor throws. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE vector
& operator=(const detail::moved_object
>& mx) { vector
&x = mx.get(); if (&x != this){ this->swap(x); x.clear(); } return *this; } #else vector
& operator=(vector
&& mx) { vector
&x = mx; if (&x != this){ this->swap(x); x.clear(); } return *this; } #endif //!
Effects
: Assigns the n copies of val to *this. //! //!
Throws
: If memory allocation throws or T's copy constructor throws. //! //!
Complexity
: Linear to n. void assign(size_type n, const value_type& val) { this->assign(cvalue_iterator(val, n), cvalue_iterator()); } //!
Effects
: Assigns the the range [first, last) to *this. //! //!
Throws
: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //!
Complexity
: Linear to n. template
void assign(InIt first, InIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible
::value; typedef detail::bool_
Result; this->priv_assign_dispatch(first, last, Result()); } //!
Effects
: Inserts a copy of x at the end of the vector. //! //!
Throws
: If memory allocation throws or //! T's copy constructor throws. //! //!
Complexity
: Amortized constant time. void push_back(const T& x) { if (this->members_.m_size < this->members_.m_capacity){ //There is more memory, just construct a new object at the end new(detail::get_pointer(this->members_.m_start) + this->members_.m_size)value_type(x); ++this->members_.m_size; } else{ this->insert(this->end(), x); } } //!
Effects
: Constructs a new element in the end of the vector //! and moves the resources of mx to this new element. //! //!
Throws
: If memory allocation throws. //! //!
Complexity
: Amortized constant time. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void push_back(const detail::moved_object
& mx) { if (this->members_.m_size < this->members_.m_capacity){ //There is more memory, just construct a new object at the end new(detail::get_pointer(this->members_.m_start + this->members_.m_size))value_type(mx); ++this->members_.m_size; } else{ this->insert(this->end(), mx); } } #else void push_back(T && mx) { if (this->members_.m_size < this->members_.m_capacity){ //There is more memory, just construct a new object at the end new(detail::get_pointer(this->members_.m_start + this->members_.m_size))value_type(move(mx)); ++this->members_.m_size; } else{ this->insert(this->end(), move(mx)); } } #endif //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(vector
& x) { allocator_type &this_al = this->alloc(), &other_al = x.alloc(); //Just swap internals detail::do_swap(this->members_.m_start, x.members_.m_start); detail::do_swap(this->members_.m_size, x.members_.m_size); detail::do_swap(this->members_.m_capacity, x.members_.m_capacity); if (this_al != other_al){ detail::do_swap(this_al, other_al); } } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() //! allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& mx) { vector
&x = mx.get(); this->swap(x); } #else void swap(vector
&& mx) { vector
&x = mx; this->swap(x); } #endif //!
Requires
: position must be a valid iterator of *this. //! //!
Effects
: Insert a copy of x before position. //! //!
Throws
: If memory allocation throws or x's copy constructor throws. //! //!
Complexity
: If position is begin() or end(), amortized constant time //! Linear time otherwise. iterator insert(iterator position, const T& x) { //Just call more general insert(pos, size, value) and return iterator size_type n = position - begin(); this->insert(position, (size_type)1, x); return iterator(this->members_.m_start + n); } //!
Requires
: position must be a valid iterator of *this. //! //!
Effects
: Insert a new element before position with mx's resources. //! //!
Throws
: If memory allocation throws. //! //!
Complexity
: If position is begin() or end(), amortized constant time //! Linear time otherwise. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
&mx) { //Just call more general insert(pos, size, value) and return iterator size_type n = position - begin(); this->insert(position ,repeat_move_it(repeat_it(mx.get(), 1)) ,repeat_move_it(repeat_it())); return iterator(this->members_.m_start + n); } #else iterator insert(iterator position, T &&mx) { //Just call more general insert(pos, size, value) and return iterator size_type n = position - begin(); this->insert(position ,repeat_move_it(repeat_it(mx, 1)) ,repeat_move_it(repeat_it())); return iterator(this->members_.m_start + n); } #endif //!
Requires
: pos must be a valid iterator of *this. //! //!
Effects
: Insert a copy of the [first, last) range before pos. //! //!
Throws
: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws or T's copy constructor throws. //! //!
Complexity
: Linear to std::distance [first, last). template
void insert(iterator pos, InIt first, InIt last) { //Dispatch depending on integer/iterator const bool aux_boolean = detail::is_convertible
::value; typedef detail::bool_
Result; this->priv_insert_dispatch(pos, first, last, Result()); } //!
Requires
: pos must be a valid iterator of *this. //! //!
Effects
: Insert n copies of x before pos. //! //!
Throws
: If memory allocation throws or T's copy constructor throws. //! //!
Complexity
: Linear to n. void insert (iterator p, size_type n, const T& x) { this->insert(p, cvalue_iterator(x, n), cvalue_iterator()); } //!
Effects
: Removes the last element from the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant time. void pop_back() { //Destroy last element --this->members_.m_size; this->destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size); } //!
Effects
: Erases the element at position pos. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the elements between pos and the //! last element. Constant if pos is the first or the last element. iterator erase(const_iterator position) { T *pos = detail::get_pointer(position.get_ptr()); T *beg = detail::get_pointer(this->members_.m_start); std::copy(assign_move_it(pos + 1), assign_move_it(beg + this->members_.m_size), pos); --this->members_.m_size; //Destroy last element base_t::destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size); return iterator(position.get_ptr()); } //!
Effects
: Erases the elements pointed by [first, last). //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the distance between first and last. iterator erase(const_iterator first, const_iterator last) { if (first != last){ // worth doing, copy down over hole T* end_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size; T* ptr = detail::get_pointer(std::copy (assign_move_it(detail::get_pointer(last.get_ptr())) ,assign_move_it(end_pos) ,detail::get_pointer(first.get_ptr()) )); size_type destroyed = (end_pos - ptr); this->destroy_n(ptr, destroyed); this->members_.m_size -= destroyed; } return iterator(first.get_ptr()); } //!
Effects
: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { pointer finish = this->members_.m_start + this->members_.m_size; if (new_size < size()){ //Destroy last elements this->erase(iterator(this->members_.m_start + new_size), this->end()); } else{ //Insert new elements at the end this->insert(iterator(finish), new_size - this->size(), x); } } //!
Effects
: Inserts or erases elements at the end such that //! the size becomes n. New elements are default constructed. //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to the difference between size() and new_size. void resize(size_type new_size) { if (new_size < this->size()){ //Destroy last elements this->erase(iterator(this->members_.m_start + new_size), this->end()); } else{ size_type n = new_size - this->size(); this->reserve(new_size); T *ptr = detail::get_pointer(this->members_.m_start + this->members_.m_size); while(n--){ //Default construct new(ptr++)T(); ++this->members_.m_size; } } } //!
Effects
: Erases all the elements of the vector. //! //!
Throws
: Nothing. //! //!
Complexity
: Linear to the number of elements in the vector. void clear() { this->priv_destroy_all(); } /// @cond //!
Effects
: Tries to deallocate the excess of memory created //! with previous allocations. The size of the vector is unchanged //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to size(). void shrink_to_fit() { priv_shrink_to_fit(alloc_version()); } private: void priv_shrink_to_fit(allocator_v1) { if(this->members_.m_capacity){ if(!size()){ this->prot_deallocate(); } else{ //This would not work with stateful allocators vector
(*this).swap(*this); } } } void priv_shrink_to_fit(allocator_v2) { if(this->members_.m_capacity){ if(!size()){ this->prot_deallocate(); } else{ size_type received_size; this->alloc().allocation_command(shrink_in_place, this->size(), this->capacity() ,received_size, this->members_.m_start); } } } void priv_destroy_all() { this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size); this->members_.m_size = 0; } template
void priv_range_insert(pointer pos, FwdIt first, FwdIt last, std::forward_iterator_tag) { if (first != last){ size_type n = std::distance(first, last); //Check if we have enough memory or try to expand current memory size_type remaining = this->members_.m_capacity - this->members_.m_size; bool same_buffer_start; std::pair
ret; size_type real_cap = this->members_.m_capacity; //Check if we already have room if (n <= remaining){ same_buffer_start = true; } else{ //There is not enough memory, allocate a new //buffer or expand the old one. size_type new_cap = this->next_capacity(n); ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, this->members_.m_size + n, new_cap, real_cap, this->members_.m_start); //Check for forward expansion same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ this->members_.m_capacity = real_cap; } } //If we had room or we have expanded forward if (same_buffer_start){ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_expand_fwd; #endif this->priv_range_insert_expand_forward (detail::get_pointer(pos), first, last, n); } //Backwards (and possibly forward) expansion else if(ret.second){ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_expand_bwd; #endif this->priv_range_insert_expand_backwards ( detail::get_pointer(ret.first) , real_cap , detail::get_pointer(pos) , first , last , n); } //New buffer else{ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS ++this->num_alloc; #endif this->priv_range_insert_new_allocation ( detail::get_pointer(ret.first) , real_cap , detail::get_pointer(pos) , first , last); } } } template
void priv_range_insert_expand_forward (T* pos, FwdIt first, FwdIt last, size_type n) { //There is enough memory T* old_finish = detail::get_pointer(this->members_.m_start) + this->members_.m_size; const size_type elems_after = old_finish - pos; if (elems_after > n){ //New elements can be just copied. //Move to uninitialized memory last objects std::uninitialized_copy(copy_move_it(old_finish - n), copy_move_it(old_finish), old_finish); this->members_.m_size += n; //Copy previous to last objects to the initialized end std::copy_backward(assign_move_it(detail::get_pointer(pos)), assign_move_it(old_finish - n), old_finish); //Insert new objects in the pos std::copy(first, last, detail::get_pointer(pos)); } else { //The new elements don't fit in the [pos, end()) range. Copy //to the beginning of the unallocated zone the last new elements. FwdIt mid = first; std::advance(mid, elems_after); std::uninitialized_copy(mid, last, old_finish); this->members_.m_size += n - elems_after; //Copy old [pos, end()) elements to the uninitialized memory std::uninitialized_copy ( copy_move_it(detail::get_pointer(pos)) , copy_move_it(old_finish) , detail::get_pointer(this->members_.m_start) + this->members_.m_size); this->members_.m_size += elems_after; //Copy first new elements in pos std::copy(first, mid, detail::get_pointer(pos)); } } template
void priv_range_insert_new_allocation (T* new_start, size_type new_cap, T* pos, FwdIt first, FwdIt last) { T* new_finish = new_start; T *old_finish; //Anti-exception rollbacks UCopiedArrayDeallocator scoped_alloc(new_start, this->alloc(), new_cap); UCopiedArrayDestructor construted_values_destroyer(new_start, 0u); //Initialize with [begin(), pos) old buffer //the start of the new buffer new_finish = std::uninitialized_copy ( copy_move_it(detail::get_pointer(this->members_.m_start)) , copy_move_it(detail::get_pointer(pos)) , old_finish = new_finish); construted_values_destroyer.increment_size(new_finish - old_finish); //Initialize new objects, starting from previous point new_finish = std::uninitialized_copy (first, last, old_finish = new_finish); construted_values_destroyer.increment_size(new_finish - old_finish); //Initialize from the rest of the old buffer, //starting from previous point new_finish = std::uninitialized_copy ( copy_move_it(detail::get_pointer(pos)) , copy_move_it(detail::get_pointer(this->members_.m_start) + this->members_.m_size) , detail::get_pointer(new_finish)); //All construction successful, disable rollbacks construted_values_destroyer.release(); scoped_alloc.release(); //Destroy and deallocate old elements //If there is allocated memory, destroy and deallocate if(this->members_.m_start != 0){ if(!base_t::trivial_dctr_after_move) this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size); this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); } this->members_.m_start = new_start; this->members_.m_size = new_finish - new_start; this->members_.m_capacity = new_cap; } template
void priv_range_insert_expand_backwards (T* new_start, size_type new_capacity, T* pos, FwdIt first, FwdIt last, size_type n) { //Backup old data T* old_start = detail::get_pointer(this->members_.m_start); T* old_finish = old_start + this->members_.m_size; size_type old_size = this->members_.m_size; //We can have 8 possibilities: const size_type elemsbefore = (size_type)(pos - old_start); const size_type s_before = (size_type)(old_start - new_start); //Update the vector buffer information to a safe state this->members_.m_start = new_start; this->members_.m_capacity = new_capacity; this->members_.m_size = 0; //If anything goes wrong, this object will destroy //all the old objects to fulfill previous vector state OldArrayDestructor old_values_destroyer(old_start, old_size); //Check if s_before is so big that even copying the old data + new data //there is a gap between the new data and the old data if(s_before >= (old_size + n)){ //Old situation: // _________________________________________________________ //| raw_mem | old_begin | old_end | //| __________________________________|___________|_________| // //New situation: // _________________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|________________________| // //Copy first old values before pos, after that the //new objects boost::interprocess::uninitialized_copy_copy (copy_move_it(old_start), copy_move_it(detail::get_pointer(pos)), first, last, detail::get_pointer(new_start)); UCopiedArrayDestructor new_values_destroyer(new_start, elemsbefore); //Now initialize the rest of memory with the last old values std::uninitialized_copy ( copy_move_it(detail::get_pointer(pos)) , copy_move_it(old_finish) , detail::get_pointer(new_start) + elemsbefore + n); //All new elements correctly constructed, avoid new element destruction new_values_destroyer.release(); this->members_.m_size = old_size + n; //Old values destroyed automatically with "old_values_destroyer" //when "old_values_destroyer" goes out of scope unless the have trivial //destructor after move. if(base_t::trivial_dctr_after_move) old_values_destroyer.release(); } //Check if s_before is so big that divides old_end else if(difference_type(s_before) >= difference_type(elemsbefore + n)){ //Old situation: // __________________________________________________ //| raw_mem | old_begin | old_end | //| ___________________________|___________|_________| // //New situation: // __________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|__________|_________|_________________| // //Copy first old values before pos, after that the //new objects boost::interprocess::uninitialized_copy_copy ( copy_move_it(old_start) , copy_move_it(detail::get_pointer(pos)) , first, last, detail::get_pointer(new_start)); UCopiedArrayDestructor new_values_destroyer(new_start, elemsbefore); size_type raw_gap = s_before - (elemsbefore + n); //Now initialize the rest of s_before memory with the //first of elements after new values std::uninitialized_copy ( copy_move_it(detail::get_pointer(pos)) , copy_move_it(detail::get_pointer(pos) + raw_gap) , detail::get_pointer(new_start) + elemsbefore + n); //All new elements correctly constructed, avoid new element destruction new_values_destroyer.release(); //All new elements correctly constructed, avoid old element destruction old_values_destroyer.release(); //Update size since we have a contiguous buffer this->members_.m_size = old_size + s_before; //Now copy remaining last objects in the old buffer begin T *to_destroy = std::copy(assign_move_it(detail::get_pointer(pos) + raw_gap), assign_move_it(old_finish), old_start); //Now destroy redundant elements except if they were moved and //they have trivial destructor after move size_type n_destroy = old_finish - to_destroy; if(!base_t::trivial_dctr_after_move) this->destroy_n(to_destroy, n_destroy); this->members_.m_size -= n_destroy; } else{ //Check if we have to do the insertion in two phases //since maybe s_before is not big enough and //the buffer was expanded both sides // //Old situation: // _________________________________________________ //| raw_mem | old_begin + old_end | raw_mem | //|_________|_____________________|_________________| // //New situation with do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|___________________________________|_____________| // //New without do_after: // _________________________________________________ //| old_begin + new + old_end | raw_mem | //|____________________________|____________________| // bool do_after = n > s_before; FwdIt before_end = first; //If we have to expand both sides, //we will play if the first new values so //calculate the upper bound of new values if(do_after){ std::advance(before_end, s_before); } //Now we can have two situations: the raw_mem of the //beginning divides the old_begin, or the new elements: if (s_before <= elemsbefore) { //The raw memory divides the old_begin group: // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_________|___________|_________|_________________| // //New situation with do_after(1): //This is not definitive situation, the second phase //will include // _________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_________|_________|_________________| // //New situation without do_after: // _________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|_____________________| // //Copy the first part of old_begin to raw_mem T *start_n = old_start + difference_type(s_before); std::uninitialized_copy ( copy_move_it(old_start) , copy_move_it(start_n) , detail::get_pointer(new_start)); //The buffer is all constructed until old_end, //release destroyer and update size old_values_destroyer.release(); this->members_.m_size = old_size + s_before; //Now copy the second part of old_begin overwriting himself T* next = std::copy(assign_move_it(start_n), assign_move_it(detail::get_pointer(pos)), old_start); if(do_after){ //Now copy the new_beg elements std::copy(first, before_end, detail::get_pointer(next)); } else{ //Now copy the all the new elements T* move_start = std::copy(first, last, detail::get_pointer(next)); //Now displace old_end elements T* move_end = std::copy(assign_move_it(detail::get_pointer(pos)), assign_move_it(old_finish), detail::get_pointer(move_start)); //Destroy remaining moved elements from old_end except if //they have trivial destructor after being moved difference_type n_destroy = s_before - n; if(!base_t::trivial_dctr_after_move) this->destroy_n(move_end, n_destroy); this->members_.m_size -= n_destroy; } } else { //The raw memory divides the new elements // //If we need two phase construction (do_after) //new group is divided in new = new_beg + new_end groups //In this phase only new_beg will be inserted // //Old situation: // _______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|_______________|___________|_________|_________________| // //New situation with do_after(): // ____________________________________________________ //| old_begin | new_beg | old_end | raw_mem | //|___________|_______________|_________|______________| // //New situation without do_after: // ______________________________________________________ //| old_begin | new | old_end | raw_mem | //|___________|_____|_________|__________________________| // //First copy whole old_begin and part of new to raw_mem FwdIt mid = first; size_type n_new_init = difference_type(s_before) - elemsbefore; std::advance(mid, n_new_init); boost::interprocess::uninitialized_copy_copy ( copy_move_it(old_start) , copy_move_it(detail::get_pointer(pos)) , first, mid, detail::get_pointer(new_start)); //The buffer is all constructed until old_end, //release destroyer and update size old_values_destroyer.release(); this->members_.m_size = old_size + s_before; if(do_after){ //Copy new_beg part std::copy(mid, before_end, old_start); } else{ //Copy all new elements T* move_start = std::copy(mid, last, old_start); //Displace old_end T* move_end = std::copy(copy_move_it(detail::get_pointer(pos)), copy_move_it(old_finish), detail::get_pointer(move_start)); //Destroy remaining moved elements from old_end except if they //have trivial destructor after being moved difference_type n_destroy = s_before - n; if(!base_t::trivial_dctr_after_move) this->destroy_n(move_end, n_destroy); this->members_.m_size -= n_destroy; } } //This is only executed if two phase construction is needed //This can be executed without exception handling since we //have to just copy and append in raw memory and //old_values_destroyer has been released in phase 1. if(do_after){ //The raw memory divides the new elements // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //New situation with do_after(2): // ______________________________________________________ //| old_begin + new | old_end |raw | //|_______________________________________|_________|____| // const size_type n_after = n - s_before; const difference_type elemsafter = old_size - elemsbefore; //The new_end part is [first + (n - n_after), last) std::advance(first, n - n_after); //We can have two situations: if (elemsafter > difference_type(n_after)){ //The raw_mem from end will divide displaced old_end // //Old situation: // ______________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|______________| // //New situation with do_after(1): // _______________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_________|________|_________| // //First copy the part of old_end raw_mem T* finish_n = old_finish - difference_type(n_after); std::uninitialized_copy ( copy_move_it(detail::get_pointer(finish_n)) , copy_move_it(old_finish) , old_finish); this->members_.m_size += n_after; //Displace the rest of old_end to the new position std::copy_backward(assign_move_it(detail::get_pointer(pos)), assign_move_it(detail::get_pointer(finish_n)), old_finish); //Now overwrite with new_end std::copy(first, last, detail::get_pointer(pos)); } else { //The raw_mem from end will divide new_end part // //Old situation: // _____________________________________________________________ //| raw_mem | old_begin | old_end | raw_mem | //|______________|___________|____________|_____________________| // //New situation with do_after(2): // _____________________________________________________________ //| old_begin + new_beg | new_end |old_end | raw_mem | //|__________________________|_______________|________|_________| // FwdIt mid = first; std::advance(mid, elemsafter); //First initialize data in raw memory boost::interprocess::uninitialized_copy_copy ( mid, last , copy_move_it(detail::get_pointer(pos)) , copy_move_it(old_finish) , old_finish); this->members_.m_size += n_after; //Now copy the part of new_end over constructed elements std::copy(first, mid, detail::get_pointer(pos)); } } } } template
void priv_range_insert(iterator pos, InIt first, InIt last, std::input_iterator_tag) { //Insert range before the pos position std::copy(std::inserter(*this, pos), first, last); } template
void priv_assign_aux(InIt first, InIt last, std::input_iterator_tag) { //Overwrite all elements we can from [first, last) iterator cur = begin(); for ( ; first != last && cur != end(); ++cur, ++first){ *cur = *first; } if (first == last){ //There are no more elements in the sequence, erase remaining this->erase(cur, end()); } else{ //There are more elements in the range, insert the remaining ones this->insert(this->end(), first, last); } } template
void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type n = std::distance(first, last); //Check if we have enough memory or try to expand current memory size_type remaining = this->members_.m_capacity - this->members_.m_size; bool same_buffer_start; std::pair
ret; size_type real_cap = this->members_.m_capacity; if (n <= remaining){ same_buffer_start = true; } else{ //There is not enough memory, allocate a new buffer size_type new_cap = this->next_capacity(n); ret = this->allocation_command (allocate_new | expand_fwd | expand_bwd, this->size() + n, new_cap, real_cap, this->members_.m_start); same_buffer_start = ret.second && this->members_.m_start == ret.first; if(same_buffer_start){ this->members_.m_capacity = real_cap; } } if(same_buffer_start){ T *start = detail::get_pointer(this->members_.m_start); if (this->size() >= n){ //There is memory, but there are more old elements than new ones //Overwrite old elements with new ones std::copy(first, last, start); //Destroy remaining old elements this->destroy_n(start + n, this->members_.m_size - n); this->members_.m_size = n; } else{ //There is memory, but there are less old elements than new ones //First overwrite some old elements with new ones FwdIt mid = first; std::advance(mid, this->size()); T *end = std::copy(first, mid, start); //Initialize the remaining new elements in the uninitialized memory std::uninitialized_copy(mid, last, end); this->members_.m_size = n; } } else if(!ret.second){ UCopiedArrayDeallocator scoped_alloc(ret.first, this->alloc(), real_cap); std::uninitialized_copy(first, last, detail::get_pointer(ret.first)); scoped_alloc.release(); //Destroy and deallocate old buffer if(this->members_.m_start != 0){ this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size); this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity); } this->members_.m_start = ret.first; this->members_.m_size = n; this->members_.m_capacity = real_cap; } else{ //Backwards expansion //If anything goes wrong, this object will destroy //all old objects T *old_start = detail::get_pointer(this->members_.m_start); size_type old_size = this->members_.m_size; OldArrayDestructor old_values_destroyer(old_start, old_size); //If something goes wrong size will be 0 //but holding the whole buffer this->members_.m_size = 0; this->members_.m_start = ret.first; this->members_.m_capacity = real_cap; //Backup old buffer data size_type old_offset = old_start - detail::get_pointer(ret.first); size_type first_count = min_value(n, old_offset); FwdIt mid = boost::interprocess::n_uninitialized_copy_n (first, first_count, detail::get_pointer(ret.first)); if(old_offset > n){ //All old elements will be destroyed by "old_values_destroyer" this->members_.m_size = n; } else{ //We have constructed objects from the new begin until //the old end so release the rollback destruction old_values_destroyer.release(); this->members_.m_start = ret.first; this->members_.m_size = first_count + old_size; //Now overwrite the old values size_type second_count = min_value(old_size, n - first_count); mid = copy_n(mid, second_count, old_start); //Check if we still have to append elements in the //uninitialized end if(second_count == old_size){ boost::interprocess::n_uninitialized_copy_n ( mid , n - first_count - second_count , old_start + old_size); } else{ //We have to destroy some old values this->destroy_n (old_start + second_count, old_size - second_count); this->members_.m_size = n; } this->members_.m_size = n; } } } template
void priv_assign_dispatch(Integer n, Integer val, detail::true_) { this->assign((size_type) n, (T) val); } template
void priv_assign_dispatch(InIt first, InIt last, detail::false_) { //Dispatch depending on integer/iterator typedef typename std::iterator_traits
::iterator_category ItCat; this->priv_assign_aux(first, last, ItCat()); } template
void priv_insert_dispatch( iterator pos, Integer n, Integer val, detail::true_) { this->insert(pos, (size_type)n, (T)val); } template
void priv_insert_dispatch(iterator pos, InIt first, InIt last, detail::false_) { //Dispatch depending on integer/iterator typedef typename std::iterator_traits
::iterator_category ItCat; this->priv_range_insert(pos.get_ptr(), first, last, ItCat()); } void priv_check_range(size_type n) const { //If n is out of range, throw an out_of_range exception if (n >= size()) throw std::out_of_range("vector::at"); } #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS public: unsigned int num_expand_fwd; unsigned int num_expand_bwd; unsigned int num_alloc; void reset_alloc_stats() { num_expand_fwd = num_expand_bwd = num_alloc = 0; } #endif /// @endcond }; template
inline bool operator==(const vector
& x, const vector
& y) { //Check first size and each element if needed return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template
inline bool operator!=(const vector
& x, const vector
& y) { //Check first size and each element if needed return x.size() != y.size() || !std::equal(x.begin(), x.end(), y.begin()); } template
inline bool operator<(const vector
& x, const vector
& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(vector
& x, vector
& y) { x.swap(y); } template
inline void swap(const detail::moved_object
>& x, vector
& y) { x.get().swap(y); } template
inline void swap(vector
&x, const detail::moved_object
>& y) { x.swap(y.get()); } #else template
inline void swap(vector
&&x, vector
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value }; }; /// @endcond } //namespace interprocess { } //namespace boost { #include
#endif // #ifndef BOOST_INTERPROCESS_VECTOR_HPP
vector.hpp
Dirección de la página
Dirección del archivo
Anterior
9/9 Siguiente
Descargar
( 70 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.