x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
asinh.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\math\special_functions\asinh.hpp
Girar
Efecto
Propiedad
Historial
// boost asinh.hpp header file // (C) Copyright Eric Ford & Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_ASINH_HPP #define BOOST_ASINH_HPP #include
#include
#include
#include
// This is the inverse of the hyperbolic sine function. namespace boost { namespace math { namespace detail{ #if defined(__GNUC__) && (__GNUC__ < 3) // gcc 2.x ignores function scope using declarations, // put them in the scope of the enclosing namespace instead: using ::std::abs; using ::std::sqrt; using ::std::log; using ::std::numeric_limits; #endif template
inline T asinh_imp(const T x) { using ::std::abs; using ::std::sqrt; using ::std::log; T const one = static_cast
(1); T const two = static_cast
(2); static T const taylor_2_bound = sqrt(tools::epsilon
()); static T const taylor_n_bound = sqrt(taylor_2_bound); static T const upper_taylor_2_bound = one/taylor_2_bound; static T const upper_taylor_n_bound = one/taylor_n_bound; if (x >= +taylor_n_bound) { if (x > upper_taylor_n_bound) { if (x > upper_taylor_2_bound) { // approximation by laurent series in 1/x at 0+ order from -1 to 0 return( log( x * two) ); } else { // approximation by laurent series in 1/x at 0+ order from -1 to 1 return( log( x*two + (one/(x*two)) ) ); } } else { return( log( x + sqrt(x*x+one) ) ); } } else if (x <= -taylor_n_bound) { return(-asinh(-x)); } else { // approximation by taylor series in x at 0 up to order 2 T result = x; if (abs(x) >= taylor_2_bound) { T x3 = x*x*x; // approximation by taylor series in x at 0 up to order 4 result -= x3/static_cast
(6); } return(result); } } } template
inline typename tools::promote_args
::type asinh(const T x) { typedef typename tools::promote_args
::type result_type; return detail::asinh_imp( static_cast
(x)); } template
inline typename tools::promote_args
::type asinh(const T x, const Policy&) { typedef typename tools::promote_args
::type result_type; return detail::asinh_imp( static_cast
(x)); } } } #endif /* BOOST_ASINH_HPP */
asinh.hpp
Dirección de la página
Dirección del archivo
Anterior
2/35
Siguiente
Descargar
( 3 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.