x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
btMatrix3x3.h - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\LinearMath\btMatrix3x3.h
Girar
Efecto
Propiedad
Historial
/* Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef btMatrix3x3_H #define btMatrix3x3_H #include "btScalar.h" #include "btVector3.h" #include "btQuaternion.h" class btMatrix3x3 { public: btMatrix3x3 () {} // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } /* template
Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) { setEulerYPR(yaw, pitch, roll); } */ btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, const btScalar& yx, const btScalar& yy, const btScalar& yz, const btScalar& zx, const btScalar& zy, const btScalar& zz) { setValue(xx, xy, xz, yx, yy, yz, zx, zy, zz); } SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other) { m_el[0] = other.m_el[0]; m_el[1] = other.m_el[1]; m_el[2] = other.m_el[2]; } SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) { m_el[0] = other.m_el[0]; m_el[1] = other.m_el[1]; m_el[2] = other.m_el[2]; return *this; } SIMD_FORCE_INLINE btVector3 getColumn(int i) const { return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]); } SIMD_FORCE_INLINE const btVector3& getRow(int i) const { return m_el[i]; } SIMD_FORCE_INLINE btVector3& operator[](int i) { btFullAssert(0 <= i && i < 3); return m_el[i]; } SIMD_FORCE_INLINE const btVector3& operator[](int i) const { btFullAssert(0 <= i && i < 3); return m_el[i]; } btMatrix3x3& operator*=(const btMatrix3x3& m); void setFromOpenGLSubMatrix(const btScalar *m) { m_el[0].setValue(m[0],m[4],m[8]); m_el[1].setValue(m[1],m[5],m[9]); m_el[2].setValue(m[2],m[6],m[10]); } void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, const btScalar& yx, const btScalar& yy, const btScalar& yz, const btScalar& zx, const btScalar& zy, const btScalar& zz) { m_el[0].setValue(xx,xy,xz); m_el[1].setValue(yx,yy,yz); m_el[2].setValue(zx,zy,zz); } void setRotation(const btQuaternion& q) { btScalar d = q.length2(); btFullAssert(d != btScalar(0.0)); btScalar s = btScalar(2.0) / d; btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy, xy + wz, btScalar(1.0) - (xx + zz), yz - wx, xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); } void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) { btScalar cy(btCos(yaw)); btScalar sy(btSin(yaw)); btScalar cp(btCos(pitch)); btScalar sp(btSin(pitch)); btScalar cr(btCos(roll)); btScalar sr(btSin(roll)); btScalar cc = cy * cr; btScalar cs = cy * sr; btScalar sc = sy * cr; btScalar ss = sy * sr; setValue(cc - sp * ss, -cs - sp * sc, -sy * cp, cp * sr, cp * cr, -sp, sc + sp * cs, -ss + sp * cc, cy * cp); } /** * setEulerZYX * @param euler a const reference to a btVector3 of euler angles * These angles are used to produce a rotation matrix. The euler * angles are applied in ZYX order. I.e a vector is first rotated * about X then Y and then Z **/ void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) { btScalar ci ( btCos(eulerX)); btScalar cj ( btCos(eulerY)); btScalar ch ( btCos(eulerZ)); btScalar si ( btSin(eulerX)); btScalar sj ( btSin(eulerY)); btScalar sh ( btSin(eulerZ)); btScalar cc = ci * ch; btScalar cs = ci * sh; btScalar sc = si * ch; btScalar ss = si * sh; setValue(cj * ch, sj * sc - cs, sj * cc + ss, cj * sh, sj * ss + cc, sj * cs - sc, -sj, cj * si, cj * ci); } void setIdentity() { setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), btScalar(0.0), btScalar(1.0), btScalar(0.0), btScalar(0.0), btScalar(0.0), btScalar(1.0)); } void getOpenGLSubMatrix(btScalar *m) const { m[0] = btScalar(m_el[0].x()); m[1] = btScalar(m_el[1].x()); m[2] = btScalar(m_el[2].x()); m[3] = btScalar(0.0); m[4] = btScalar(m_el[0].y()); m[5] = btScalar(m_el[1].y()); m[6] = btScalar(m_el[2].y()); m[7] = btScalar(0.0); m[8] = btScalar(m_el[0].z()); m[9] = btScalar(m_el[1].z()); m[10] = btScalar(m_el[2].z()); m[11] = btScalar(0.0); } void getRotation(btQuaternion& q) const { btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); btScalar temp[4]; if (trace > btScalar(0.0)) { btScalar s = btSqrt(trace + btScalar(1.0)); temp[3]=(s * btScalar(0.5)); s = btScalar(0.5) / s; temp[0]=((m_el[2].y() - m_el[1].z()) * s); temp[1]=((m_el[0].z() - m_el[2].x()) * s); temp[2]=((m_el[1].x() - m_el[0].y()) * s); } else { int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); temp[i] = s * btScalar(0.5); s = btScalar(0.5) / s; temp[3] = (m_el[k][j] - m_el[j][k]) * s; temp[j] = (m_el[j][i] + m_el[i][j]) * s; temp[k] = (m_el[k][i] + m_el[i][k]) * s; } q.setValue(temp[0],temp[1],temp[2],temp[3]); } void getEuler(btScalar& yaw, btScalar& pitch, btScalar& roll) const { if (btScalar(m_el[1].z()) < btScalar(1)) { if (btScalar(m_el[1].z()) > -btScalar(1)) { yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); pitch = btScalar(btAsin(-m_el[1].y())); roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); } else { yaw = btScalar(-btAtan2(-m_el[0].y(), m_el[0].z())); pitch = SIMD_HALF_PI; roll = btScalar(0.0); } } else { yaw = btScalar(btAtan2(-m_el[0].y(), m_el[0].z())); pitch = -SIMD_HALF_PI; roll = btScalar(0.0); } } btMatrix3x3 scaled(const btVector3& s) const { return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); } btScalar determinant() const; btMatrix3x3 adjoint() const; btMatrix3x3 absolute() const; btMatrix3x3 transpose() const; btMatrix3x3 inverse() const; btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const { return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); } SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const { return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); } SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const { return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); } protected: btScalar cofac(int r1, int c1, int r2, int c2) const { return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; } btVector3 m_el[3]; }; SIMD_FORCE_INLINE btMatrix3x3& btMatrix3x3::operator*=(const btMatrix3x3& m) { setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); return *this; } SIMD_FORCE_INLINE btScalar btMatrix3x3::determinant() const { return triple((*this)[0], (*this)[1], (*this)[2]); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::absolute() const { return btMatrix3x3( btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::transpose() const { return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(), m_el[0].y(), m_el[1].y(), m_el[2].y(), m_el[0].z(), m_el[1].z(), m_el[2].z()); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::adjoint() const { return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::inverse() const { btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); btScalar det = (*this)[0].dot(co); btFullAssert(det != btScalar(0.0)); btScalar s = btScalar(1.0) / det; return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::transposeTimes(const btMatrix3x3& m) const { return btMatrix3x3( m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); } SIMD_FORCE_INLINE btMatrix3x3 btMatrix3x3::timesTranspose(const btMatrix3x3& m) const { return btMatrix3x3( m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); } SIMD_FORCE_INLINE btVector3 operator*(const btMatrix3x3& m, const btVector3& v) { return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); } SIMD_FORCE_INLINE btVector3 operator*(const btVector3& v, const btMatrix3x3& m) { return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); } SIMD_FORCE_INLINE btMatrix3x3 operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) { return btMatrix3x3( m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]), m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]), m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2])); } /* SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { return btMatrix3x3( m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); } */ #endif
btMatrix3x3.h
Dirección de la página
Dirección del archivo
Anterior
10/27
Siguiente
Descargar
( 12 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.