x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
btConeTwistConstraint.cpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletDynamics\ConstraintSolver\btConeTwistConstraint.cpp
Girar
Efecto
Propiedad
Historial
/* Bullet Continuous Collision Detection and Physics Library btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Written by: Marcus Hennix */ #include "btConeTwistConstraint.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btMinMax.h" #include
btConeTwistConstraint::btConeTwistConstraint() :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE) { } btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame,const btTransform& rbBFrame) :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame), m_angularOnly(false) { // flip axis for correct angles m_rbBFrame.getBasis()[1][0] *= btScalar(-1.); m_rbBFrame.getBasis()[1][1] *= btScalar(-1.); m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); m_swingSpan1 = btScalar(1e30); m_swingSpan2 = btScalar(1e30); m_twistSpan = btScalar(1e30); m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_solveTwistLimit = false; m_solveSwingLimit = false; } btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame) :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame), m_angularOnly(false) { m_rbBFrame = m_rbAFrame; // flip axis for correct angles m_rbBFrame.getBasis()[1][0] *= btScalar(-1.); m_rbBFrame.getBasis()[1][1] *= btScalar(-1.); m_rbBFrame.getBasis()[1][2] *= btScalar(-1.); m_rbBFrame.getBasis()[2][0] *= btScalar(-1.); m_rbBFrame.getBasis()[2][1] *= btScalar(-1.); m_rbBFrame.getBasis()[2][2] *= btScalar(-1.); m_swingSpan1 = btScalar(1e30); m_swingSpan2 = btScalar(1e30); m_twistSpan = btScalar(1e30); m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_solveTwistLimit = false; m_solveSwingLimit = false; } void btConeTwistConstraint::buildJacobian() { m_appliedImpulse = btScalar(0.); //set bias, sign, clear accumulator m_swingCorrection = btScalar(0.); m_twistLimitSign = btScalar(0.); m_solveTwistLimit = false; m_solveSwingLimit = false; m_accTwistLimitImpulse = btScalar(0.); m_accSwingLimitImpulse = btScalar(0.); if (!m_angularOnly) { btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); btVector3 relPos = pivotBInW - pivotAInW; btVector3 normal[3]; if (relPos.length2() > SIMD_EPSILON) { normal[0] = relPos.normalized(); } else { normal[0].setValue(btScalar(1.0),0,0); } btPlaneSpace1(normal[0], normal[1], normal[2]); for (int i=0;i<3;i++) { new (&m_jac[i]) btJacobianEntry( m_rbA.getCenterOfMassTransform().getBasis().transpose(), m_rbB.getCenterOfMassTransform().getBasis().transpose(), pivotAInW - m_rbA.getCenterOfMassPosition(), pivotBInW - m_rbB.getCenterOfMassPosition(), normal[i], m_rbA.getInvInertiaDiagLocal(), m_rbA.getInvMass(), m_rbB.getInvInertiaDiagLocal(), m_rbB.getInvMass()); } } btVector3 b1Axis1,b1Axis2,b1Axis3; btVector3 b2Axis1,b2Axis2; b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0); b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0); btScalar swing1=btScalar(0.),swing2 = btScalar(0.); // Get Frame into world space if (m_swingSpan1 >= btScalar(0.05f)) { b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1); swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) ); } if (m_swingSpan2 >= btScalar(0.05f)) { b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2); swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) ); } btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1); btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2); btScalar EllipseAngle = btFabs(swing1)* RMaxAngle1Sq + btFabs(swing2) * RMaxAngle2Sq; if (EllipseAngle > 1.0f) { m_swingCorrection = EllipseAngle-1.0f; m_solveSwingLimit = true; // Calculate necessary axis & factors m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3)); m_swingAxis.normalize(); btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f; m_swingAxis *= swingAxisSign; m_kSwing = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis)); } // Twist limits if (m_twistSpan >= btScalar(0.)) { btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1); btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1); btVector3 TwistRef = quatRotate(rotationArc,b2Axis2); btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) ); btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.); if (twist <= -m_twistSpan*lockedFreeFactor) { m_twistCorrection = -(twist + m_twistSpan); m_solveTwistLimit = true; m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; m_twistAxis.normalize(); m_twistAxis *= -1.0f; m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis)); } else if (twist > m_twistSpan*lockedFreeFactor) { m_twistCorrection = (twist - m_twistSpan); m_solveTwistLimit = true; m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f; m_twistAxis.normalize(); m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) + getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis)); } } } void btConeTwistConstraint::solveConstraint(btScalar timeStep) { btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin(); btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin(); btScalar tau = btScalar(0.3); //linear part if (!m_angularOnly) { btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition(); btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition(); btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1); btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2); btVector3 vel = vel1 - vel2; for (int i=0;i<3;i++) { const btVector3& normal = m_jac[i].m_linearJointAxis; btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal(); btScalar rel_vel; rel_vel = normal.dot(vel); //positional error (zeroth order error) btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv; m_appliedImpulse += impulse; btVector3 impulse_vector = normal * impulse; m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition()); m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition()); } } { ///solve angular part const btVector3& angVelA = getRigidBodyA().getAngularVelocity(); const btVector3& angVelB = getRigidBodyB().getAngularVelocity(); // solve swing limit if (m_solveSwingLimit) { btScalar amplitude = ((angVelB - angVelA).dot( m_swingAxis )*m_relaxationFactor*m_relaxationFactor + m_swingCorrection*(btScalar(1.)/timeStep)*m_biasFactor); btScalar impulseMag = amplitude * m_kSwing; // Clamp the accumulated impulse btScalar temp = m_accSwingLimitImpulse; m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) ); impulseMag = m_accSwingLimitImpulse - temp; btVector3 impulse = m_swingAxis * impulseMag; m_rbA.applyTorqueImpulse(impulse); m_rbB.applyTorqueImpulse(-impulse); } // solve twist limit if (m_solveTwistLimit) { btScalar amplitude = ((angVelB - angVelA).dot( m_twistAxis )*m_relaxationFactor*m_relaxationFactor + m_twistCorrection*(btScalar(1.)/timeStep)*m_biasFactor ); btScalar impulseMag = amplitude * m_kTwist; // Clamp the accumulated impulse btScalar temp = m_accTwistLimitImpulse; m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) ); impulseMag = m_accTwistLimitImpulse - temp; btVector3 impulse = m_twistAxis * impulseMag; m_rbA.applyTorqueImpulse(impulse); m_rbB.applyTorqueImpulse(-impulse); } } } void btConeTwistConstraint::updateRHS(btScalar timeStep) { (void)timeStep; }
btConeTwistConstraint.cpp
Dirección de la página
Dirección del archivo
Anterior 1/21
Siguiente
Descargar
( 9 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.