x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
odemath.h - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\ogre\include\ode\odemath.h
Girar
Efecto
Propiedad
Historial
/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ #ifndef _ODE_ODEMATH_H_ #define _ODE_ODEMATH_H_ #include
#ifdef __GNUC__ #define PURE_INLINE extern inline #else #define PURE_INLINE inline #endif /* * macro to access elements i,j in an NxM matrix A, independent of the * matrix storage convention. */ #define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) /* * Macro to test for valid floating point values */ #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[2]) || dIsNan(v[2]) || dIsNan(v[3]))) #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) /* * General purpose vector operations with other vectors or constants. */ #define dOP(a,op,b,c) \ (a)[0] = ((b)[0]) op ((c)[0]); \ (a)[1] = ((b)[1]) op ((c)[1]); \ (a)[2] = ((b)[2]) op ((c)[2]); #define dOPC(a,op,b,c) \ (a)[0] = ((b)[0]) op (c); \ (a)[1] = ((b)[1]) op (c); \ (a)[2] = ((b)[2]) op (c); #define dOPE(a,op,b) \ (a)[0] op ((b)[0]); \ (a)[1] op ((b)[1]); \ (a)[2] op ((b)[2]); #define dOPEC(a,op,c) \ (a)[0] op (c); \ (a)[1] op (c); \ (a)[2] op (c); /* * Length, and squared length helpers. dLENGTH returns the length of a dVector3. * dLENGTHSQUARED return the squared length of a dVector3. */ #define dLENGTHSQUARED(a) (((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2])) #ifdef __cplusplus PURE_INLINE dReal dLENGTH (const dReal *a) { return dSqrt(dLENGTHSQUARED(a)); } #else #define dLENGTH(a) ( dSqrt( ((a)[0])*((a)[0]) + ((a)[1])*((a)[1]) + ((a)[2])*((a)[2]) ) ) #endif /* __cplusplus */ /* * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced * p and q indexes apart respectively. dDOT() means dDOT11. * in C++ we could use function templates to get all the versions of these * functions - but on some compilers this will result in sub-optimal code. */ #define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)]) #ifdef __cplusplus PURE_INLINE dReal dDOT (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); } PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); } PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); } PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); } PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); } PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); } PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); } #else #define dDOT(a,b) dDOTpq(a,b,1,1) #define dDOT13(a,b) dDOTpq(a,b,1,3) #define dDOT31(a,b) dDOTpq(a,b,3,1) #define dDOT33(a,b) dDOTpq(a,b,3,3) #define dDOT14(a,b) dDOTpq(a,b,1,4) #define dDOT41(a,b) dDOTpq(a,b,4,1) #define dDOT44(a,b) dDOTpq(a,b,4,4) #endif /* __cplusplus */ /* * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b' * and `c' are spaced p, q and r indexes apart respectively. * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to * +=, -= etc to get other effects. */ #define dCROSS(a,op,b,c) \ do { \ (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \ (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \ (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]); \ } while(0) #define dCROSSpqr(a,op,b,c,p,q,r) \ do { \ (a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \ (a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \ (a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]); \ } while(0) #define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4) #define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1) #define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4) #define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1) #define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4) #define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1) #define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4) /* * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. * A is stored by rows, and has `skip' elements per row. the matrix is * assumed to be already zero, so this does not write zero elements! * if (plus,minus) is (+,-) then a positive version will be written. * if (plus,minus) is (-,+) then a negative version will be written. */ #define dCROSSMAT(A,a,skip,plus,minus) \ do { \ (A)[1] = minus (a)[2]; \ (A)[2] = plus (a)[1]; \ (A)[(skip)+0] = plus (a)[2]; \ (A)[(skip)+2] = minus (a)[0]; \ (A)[2*(skip)+0] = minus (a)[1]; \ (A)[2*(skip)+1] = plus (a)[0]; \ } while(0) /* * compute the distance between two 3D-vectors */ #ifdef __cplusplus PURE_INLINE dReal dDISTANCE (const dVector3 a, const dVector3 b) { return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]) ); } #else #define dDISTANCE(a,b) \ (dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) )) #endif /* * special case matrix multipication, with operator selection */ #define dMULTIPLYOP0_331(A,op,B,C) \ do { \ (A)[0] op dDOT((B),(C)); \ (A)[1] op dDOT((B+4),(C)); \ (A)[2] op dDOT((B+8),(C)); \ } while(0) #define dMULTIPLYOP1_331(A,op,B,C) \ do { \ (A)[0] op dDOT41((B),(C)); \ (A)[1] op dDOT41((B+1),(C)); \ (A)[2] op dDOT41((B+2),(C)); \ } while(0) #define dMULTIPLYOP0_133(A,op,B,C) \ do { \ (A)[0] op dDOT14((B),(C)); \ (A)[1] op dDOT14((B),(C+1)); \ (A)[2] op dDOT14((B),(C+2)); \ } while(0) #define dMULTIPLYOP0_333(A,op,B,C) \ do { \ (A)[0] op dDOT14((B),(C)); \ (A)[1] op dDOT14((B),(C+1)); \ (A)[2] op dDOT14((B),(C+2)); \ (A)[4] op dDOT14((B+4),(C)); \ (A)[5] op dDOT14((B+4),(C+1)); \ (A)[6] op dDOT14((B+4),(C+2)); \ (A)[8] op dDOT14((B+8),(C)); \ (A)[9] op dDOT14((B+8),(C+1)); \ (A)[10] op dDOT14((B+8),(C+2)); \ } while(0) #define dMULTIPLYOP1_333(A,op,B,C) \ do { \ (A)[0] op dDOT44((B),(C)); \ (A)[1] op dDOT44((B),(C+1)); \ (A)[2] op dDOT44((B),(C+2)); \ (A)[4] op dDOT44((B+1),(C)); \ (A)[5] op dDOT44((B+1),(C+1)); \ (A)[6] op dDOT44((B+1),(C+2)); \ (A)[8] op dDOT44((B+2),(C)); \ (A)[9] op dDOT44((B+2),(C+1)); \ (A)[10] op dDOT44((B+2),(C+2)); \ } while(0) #define dMULTIPLYOP2_333(A,op,B,C) \ do { \ (A)[0] op dDOT((B),(C)); \ (A)[1] op dDOT((B),(C+4)); \ (A)[2] op dDOT((B),(C+8)); \ (A)[4] op dDOT((B+4),(C)); \ (A)[5] op dDOT((B+4),(C+4)); \ (A)[6] op dDOT((B+4),(C+8)); \ (A)[8] op dDOT((B+8),(C)); \ (A)[9] op dDOT((B+8),(C+4)); \ (A)[10] op dDOT((B+8),(C+8)); \ } while(0) #ifdef __cplusplus #define DECL template
PURE_INLINE void DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); } DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); } DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); } DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); } DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); } DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); } DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); } DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); } DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); } DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); } DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); } DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); } #undef DECL #else #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C) #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C) #define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C) #define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C) #define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C) #define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C) #define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C) #define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C) #define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C) #define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C) #define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C) #define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C) #endif #ifdef __cplusplus extern "C" { #endif /* * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) */ ODE_API void dNormalize3 (dVector3 a); ODE_API void dNormalize4 (dVector4 a); /* * given a unit length "normal" vector n, generate vectors p and q vectors * that are an orthonormal basis for the plane space perpendicular to n. * i.e. this makes p,q such that n,p,q are all perpendicular to each other. * q will equal n x p. if n is not unit length then p will be unit length but * q wont be. */ ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); #ifdef __cplusplus } #endif #endif
odemath.h
Dirección de la página
Dirección del archivo
Anterior
19/21
Siguiente
Descargar
( 10 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.