x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
map.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\interprocess\containers\map.hpp
Girar
Efecto
Propiedad
Historial
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_map/stl_multimap files. Modified by Ion Gazta�ga 2004. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_INTERPROCESS_MAP_HPP #define BOOST_INTERPROCESS_MAP_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { /// @cond // Forward declarations of operators == and <, needed for friend declarations. template
inline bool operator==(const map
& x, const map
& y); template
inline bool operator<(const map
& x, const map
& y); /// @endcond //! A map is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of values of another //! type T based on the keys. The map class supports bidirectional iterators. //! //! A map satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! map
the key_type is Key and the value_type is std::pair
. //! //! Pred is the ordering function for Keys (e.g.
std::less
). //! //! Alloc is the allocator to allocate the value_types //! (e.g.
boost::interprocess:allocator< std::pair
). template
class map { /// @cond private: typedef detail::rbtree
, detail::select1st< std::pair
>, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing map /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef T mapped_type; typedef Pred key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; /// @cond class value_compare_impl : public Pred, public std::binary_function
{ friend class map
; protected : value_compare_impl(const Pred &c) : Pred(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return Pred::operator()(x.first, y.first); } }; /// @endcond typedef value_compare_impl value_compare; //!
Effects
: Constructs an empty map using the specified comparison object //! and allocator. //! //!
Complexity
: Constant. explicit map(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //!
Effects
: Constructs an empty map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //!
Complexity
: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template
map(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, true) {} //!
Effects
: Copy constructs a map. //! //!
Complexity
: Linear in x.size(). map(const map
& x) : m_tree(x.m_tree) {} //!
Effects
: Move constructs a map. Constructs *this using x's resources. //! //!
Complexity
: Construct. //! //!
Postcondition
: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE map(const detail::moved_object
>& x) : m_tree(move(x.get().m_tree)) {} #else map(map
&&x) : m_tree(move(x.m_tree)) {} #endif //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). map
& operator=(const map
& x) { m_tree = x.m_tree; return *this; } //!
Effects
: this->swap(x.get()). //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE map
& operator=(const detail::moved_object
>& x) { m_tree = move(x.get().m_tree); return *this; } #else map
& operator=(map
&&x) { m_tree = move(x.m_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return value_compare(m_tree.key_comp()); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the objects constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return m_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_tree.max_size(); } //! Effects: If there is no key equivalent to x in the map, inserts //! value_type(x, T()) into the map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T& operator[](const key_type& k) { //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ value_type val(k, move(T())); i = insert(i, move(val)); } return (*i).second; } //! Effects: If there is no key equivalent to x in the map, inserts //! value_type(move(x), T()) into the map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE T& operator[](const detail::moved_object
& mk) { key_type &k = mk.get(); //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ value_type val(k, move(T())); i = insert(i, move(val)); } return (*i).second; } #else T& operator[](key_type &&mk) { key_type &k = mk; //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ value_type val(move(k), move(T())); i = insert(i, move(val)); } return (*i).second; } #endif /* //! Effects: If there is no key equivalent to x in the map, inserts //! value_type(move(x), T()) into the map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T& at(const key_type& x) { if(this->find(x) == this->end()){ } key_type &k = mk.get(); //we can optimize this iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)){ value_type val(k, move(T())); i = insert(i, move(val)); } return (*i).second; } //; //const T& at(const key_type& x) const; //4 Returns: A reference to the element whose key is equivalent to x. //5 Throws: An exception object of type out_of_range if no such element is present. */ //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(map
& x) { m_tree.swap(x.m_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& x) { m_tree.swap(x.get().m_tree); } #else void swap(map
&&x) { m_tree.swap(x.m_tree); } #endif //!
Effects
: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. std::pair
insert(const value_type& x) { return m_tree.insert_unique(x); } //!
Effects
: Inserts a new value_type created from the pair if and only if //! there is no element in the container with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. std::pair
insert(const std::pair
& x) { return m_tree.insert_unique(x); } //!
Effects
: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair
insert(const detail::moved_object
> &x) { return m_tree.insert_unique(x); } #else std::pair
insert(std::pair
&&x) { return m_tree.insert_unique(move(x)); } #endif //!
Effects
: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair
insert(const detail::moved_object
& x) { return m_tree.insert_unique(x); } #else std::pair
insert(value_type &&x) { return m_tree.insert_unique(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const value_type& x) { return m_tree.insert_unique(position, x); } //!
Effects
: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
> &x) { return m_tree.insert_unique(position, x); } #else iterator insert(iterator position, std::pair
&&x) { return m_tree.insert_unique(position, move(x)); } #endif //!
Effects
: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. iterator insert(iterator position, const std::pair
& x) { return m_tree.insert_unique(position, x); } //!
Effects
: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
& x) { return m_tree.insert_unique(position, x); } #else iterator insert(iterator position, value_type &&x) { return m_tree.insert_unique(position, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) template
void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } //!
Effects
: Erases the element pointed to by position. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Amortized constant time iterator erase(const_iterator position) { return m_tree.erase(position); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_tree.clear(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //!
Returns
: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.find(x) == m_tree.end() ? 0 : 1; } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_tree.equal_range(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template
friend bool operator== (const map
&, const map
&); template
friend bool operator< (const map
&, const map
&); /// @endcond }; template
inline bool operator==(const map
& x, const map
& y) { return x.m_tree == y.m_tree; } template
inline bool operator<(const map
& x, const map
& y) { return x.m_tree < y.m_tree; } template
inline bool operator!=(const map
& x, const map
& y) { return !(x == y); } template
inline bool operator>(const map
& x, const map
& y) { return y < x; } template
inline bool operator<=(const map
& x, const map
& y) { return !(y < x); } template
inline bool operator>=(const map
& x, const map
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(map
& x, map
& y) { x.swap(y); } template
inline void swap(const detail::moved_object
>& x, map
& y) { x.get().swap(y); } template
inline void swap(map
& x, const detail::moved_object
>& y) { x.swap(y.get()); } #else template
inline void swap(map
&&x, map
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; // Forward declaration of operators < and ==, needed for friend declaration. template
inline bool operator==(const multimap
& x, const multimap
& y); template
inline bool operator<(const multimap
& x, const multimap
& y); //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; /// @endcond //! A multimap is a kind of associative container that supports equivalent keys //! (possibly containing multiple copies of the same key value) and provides for //! fast retrieval of values of another type T based on the keys. The multimap class //! supports bidirectional iterators. //! //! A multimap satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! map
the key_type is Key and the value_type is std::pair
. //! //! Pred is the ordering function for Keys (e.g.
std::less
). //! //! Alloc is the allocator to allocate the value_types //!(e.g.
boost::interprocess:allocator< std::pair<
const
Key, T>
). template
class multimap { /// @cond private: typedef detail::rbtree
, detail::select1st< std::pair
>, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing map /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef T mapped_type; typedef Pred key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; /// @cond class value_compare_impl : public Pred, public std::binary_function
{ friend class multimap
; protected : value_compare_impl(const Pred &c) : Pred(c) {} public: bool operator()(const value_type& x, const value_type& y) const { return Pred::operator()(x.first, y.first); } }; /// @endcond typedef value_compare_impl value_compare; //!
Effects
: Constructs an empty multimap using the specified comparison //! object and allocator. //! //!
Complexity
: Constant. explicit multimap(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //!
Effects
: Constructs an empty multimap using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //!
Complexity
: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template
multimap(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, false) {} //!
Effects
: Copy constructs a multimap. //! //!
Complexity
: Linear in x.size(). multimap(const multimap
& x) : m_tree(x.m_tree) {} //!
Effects
: Move constructs a multimap. Constructs *this using x's resources. //! //!
Complexity
: Construct. //! //!
Postcondition
: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE multimap(const detail::moved_object
>& x) : m_tree(move(x.get().m_tree)) {} #else multimap(multimap
&& x) : m_tree(move(x.m_tree)) {} #endif //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). multimap
& operator=(const multimap
& x) { m_tree = x.m_tree; return *this; } //!
Effects
: this->swap(x.get()). //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE multimap
& operator=(const detail::moved_object
>& x) { m_tree = move(x.get().m_tree); return *this; } #else multimap
& operator=(multimap
&& x) { m_tree = move(x.m_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return value_compare(m_tree.key_comp()); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the objects constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return m_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_tree.max_size(); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(multimap
& x) { m_tree.swap(x.m_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& x) { m_tree.swap(x.get().m_tree); } #else void swap(multimap
&& x) { m_tree.swap(x.m_tree); } #endif //!
Effects
: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //!
Complexity
: Logarithmic. iterator insert(const value_type& x) { return m_tree.insert_equal(x); } //!
Effects
: Inserts a new value constructed from x and returns //! the iterator pointing to the newly inserted element. //! //!
Complexity
: Logarithmic. iterator insert(const std::pair
& x) { return m_tree.insert_equal(x); } //!
Effects
: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const detail::moved_object
>& x) { return m_tree.insert_equal(x); } #else iterator insert(std::pair
&& x) { return m_tree.insert_equal(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const value_type& x) { return m_tree.insert_equal(position, x); } //!
Effects
: Inserts a new value constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(iterator position, const std::pair
& x) { return m_tree.insert_equal(position, x); } //!
Effects
: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(iterator position, const detail::moved_object
>& x) { return m_tree.insert_equal(position, x); } #else iterator insert(iterator position, std::pair
&& x) { return m_tree.insert_equal(position, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) . //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) template
void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } //!
Effects
: Erases the element pointed to by position. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Amortized constant time iterator erase(const_iterator position) { return m_tree.erase(position); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_tree.clear(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //!
Returns
: A const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) {return m_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_tree.equal_range(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template
friend bool operator== (const multimap
& x, const multimap
& y); template
friend bool operator< (const multimap
& x, const multimap
& y); /// @endcond }; template
inline bool operator==(const multimap
& x, const multimap
& y) { return x.m_tree == y.m_tree; } template
inline bool operator<(const multimap
& x, const multimap
& y) { return x.m_tree < y.m_tree; } template
inline bool operator!=(const multimap
& x, const multimap
& y) { return !(x == y); } template
inline bool operator>(const multimap
& x, const multimap
& y) { return y < x; } template
inline bool operator<=(const multimap
& x, const multimap
& y) { return !(y < x); } template
inline bool operator>=(const multimap
& x, const multimap
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(multimap
& x, multimap
& y) { x.swap(y); } template
inline void swap(const detail::moved_object
>& x, multimap
& y) { x.get().swap(y); } template
inline void swap(multimap
& x, const detail::moved_object
>& y) { x.swap(y.get()); } #else template
inline void swap(multimap
&&x, multimap
&&y) { x.swap(y); } #endif /// @cond template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include
#endif /* BOOST_INTERPROCESS_MAP_HPP */
map.hpp
Dirección de la página
Dirección del archivo
Anterior
5/9
Siguiente
Descargar
( 45 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.