x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
set.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\interprocess\containers\set.hpp
Girar
Efecto
Propiedad
Historial
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// // // This file comes from SGI's stl_set/stl_multiset files. Modified by Ion Gaztanaga 2004. // Renaming, isolating and porting to generic algorithms. Pointer typedef // set to allocator::pointer to allow placing it in shared memory. // /////////////////////////////////////////////////////////////////////////////// /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */ #ifndef BOOST_INTERPROCESS_SET_HPP #define BOOST_INTERPROCESS_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template
inline bool operator==(const set
& x, const set
& y); template
inline bool operator<(const set
& x, const set
& y); /// @endcond //! A set is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of the keys themselves. //! Class set supports bidirectional iterators. //! //! A set satisfies all of the requirements of a container and of a reversible container //! , and of an associative container. A set also provides most operations described in //! for unique keys. template
class set { /// @cond private: typedef detail::rbtree
, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing set /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //!
Effects
: Constructs an empty set using the specified comparison object //! and allocator. //! //!
Complexity
: Constant. explicit set(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //!
Effects
: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //!
Complexity
: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template
set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, true) {} //!
Effects
: Copy constructs a set. //! //!
Complexity
: Linear in x.size(). set(const set
& x) : m_tree(x.m_tree) {} //!
Effects
: Move constructs a set. Constructs *this using x's resources. //! //!
Complexity
: Construct. //! //!
Postcondition
: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE set(const detail::moved_object
>& x) : m_tree(move(x.get().m_tree)) {} #else set(set
&&x) : m_tree(move(x.m_tree)) {} #endif //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). set
& operator=(const set
& x) { m_tree = x.m_tree; return *this; } //!
Effects
: this->swap(x.get()). //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE set
& operator=(const detail::moved_object
>& x) { m_tree = move(x.get().m_tree); return *this; } #else set
& operator=(set
&&x) { m_tree = move(x.m_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the object�s constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant iterator begin() { return m_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_tree.max_size(); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(set
& x) { m_tree.swap(x.m_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& x) { m_tree.swap(x.get().m_tree); } #else void swap(set
&&x) { m_tree.swap(x.m_tree); } #endif //!
Effects
: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. std::pair
insert(const value_type& x) { return m_tree.insert_unique(x); } //!
Effects
: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //!
Returns
: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair
insert(const detail::moved_object
& x) { return m_tree.insert_unique(x); } #else std::pair
insert(value_type &&x) { return m_tree.insert_unique(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, const value_type& x) { return m_tree.insert_unique(p, x); } //!
Effects
: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent to the key of x. //! //!
Complexity
: Logarithmic. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const_iterator p, const detail::moved_object
& x) { return m_tree.insert_unique(p, x); } #else iterator insert(const_iterator p, value_type &&x) { return m_tree.insert_unique(p, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) template
void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } //!
Effects
: Erases the element pointed to by p. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_tree.clear(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //!
Returns
: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.find(x) == m_tree.end() ? 0 : 1; } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_tree.equal_range(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template
friend bool operator== (const set
&, const set
&); template
friend bool operator< (const set
&, const set
&); /// @endcond }; template
inline bool operator==(const set
& x, const set
& y) { return x.m_tree == y.m_tree; } template
inline bool operator<(const set
& x, const set
& y) { return x.m_tree < y.m_tree; } template
inline bool operator!=(const set
& x, const set
& y) { return !(x == y); } template
inline bool operator>(const set
& x, const set
& y) { return y < x; } template
inline bool operator<=(const set
& x, const set
& y) { return !(y < x); } template
inline bool operator>=(const set
& x, const set
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(set
& x, set
& y) { x.swap(y); } template
inline void swap(set
& x, detail::moved_object
>& y) { x.swap(y.get()); } template
inline void swap(detail::moved_object
>& y, set
& x) { y.swap(x.get()); } #else template
inline void swap(set
&&x, set
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; // Forward declaration of operators < and ==, needed for friend declaration. template
inline bool operator==(const multiset
& x, const multiset
& y); template
inline bool operator<(const multiset
& x, const multiset
& y); /// @endcond //! A multiset is a kind of associative container that supports equivalent keys //! (possibly contains multiple copies of the same key value) and provides for //! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators. //! //! A multiset satisfies all of the requirements of a container and of a reversible //! container, and of an associative container). multiset also provides most operations //! described for duplicate keys. template
class multiset { /// @cond private: typedef detail::rbtree
, Pred, Alloc> tree_t; tree_t m_tree; // red-black tree representing multiset /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef Pred key_compare; typedef Pred value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //!
Effects
: Constructs an empty multiset using the specified comparison //! object and allocator. //! //!
Complexity
: Constant. explicit multiset(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //!
Effects
: Constructs an empty multiset using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //!
Complexity
: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template
multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_tree(first, last, comp, a, false) {} //!
Effects
: Copy constructs a multiset. //! //!
Complexity
: Linear in x.size(). multiset(const multiset
& x) : m_tree(x.m_tree) {} //!
Effects
: Move constructs a multiset. Constructs *this using x's resources. //! //!
Complexity
: Construct. //! //!
Postcondition
: x is emptied. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE multiset(const detail::moved_object
>& x) : m_tree(move(x.get().m_tree)) {} #else multiset(multiset
&&x) : m_tree(move(x.m_tree)) {} #endif //!
Effects
: Makes *this a copy of x. //! //!
Complexity
: Linear in x.size(). multiset
& operator=(const multiset
& x) { m_tree = x.m_tree; return *this; } //!
Effects
: this->swap(x.get()). //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE multiset
& operator=(const detail::moved_object
>& x) { m_tree = move(x.get().m_tree); return *this; } #else multiset
& operator=(multiset
&&x) { m_tree = move(x.m_tree); return *this; } #endif //!
Effects
: Returns the comparison object out //! of which a was constructed. //! //!
Complexity
: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns an object of value_compare constructed out //! of the comparison object. //! //!
Complexity
: Constant. value_compare value_comp() const { return m_tree.key_comp(); } //!
Effects
: Returns a copy of the Allocator that //! was passed to the object�s constructor. //! //!
Complexity
: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //!
Effects
: Returns an iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator begin() { return m_tree.begin(); } //!
Effects
: Returns a const_iterator to the first element contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator begin() const { return m_tree.begin(); } //!
Effects
: Returns an iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. iterator end() { return m_tree.end(); } //!
Effects
: Returns a const_iterator to the end of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_iterator end() const { return m_tree.end(); } //!
Effects
: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //!
Effects
: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //!
Effects
: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. reverse_iterator rend() { return m_tree.rend(); } //!
Effects
: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //!
Effects
: Returns true if the container contains no elements. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. bool empty() const { return m_tree.empty(); } //!
Effects
: Returns the number of the elements contained in the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type size() const { return m_tree.size(); } //!
Effects
: Returns the largest possible size of the container. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. size_type max_size() const { return m_tree.max_size(); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. void swap(multiset
& x) { m_tree.swap(x.m_tree); } //!
Effects
: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //!
Throws
: Nothing. //! //!
Complexity
: Constant. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
>& x) { m_tree.swap(x.get().m_tree); } #else void swap(multiset
&& x) { m_tree.swap(x.m_tree); } #endif //!
Effects
: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //!
Complexity
: Logarithmic. iterator insert(const value_type& x) { return m_tree.insert_equal(x); } //!
Effects
: Inserts a copy of x in the container. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const detail::moved_object
& x) { return m_tree.insert_equal(x); } #else iterator insert(value_type && x) { return m_tree.insert_equal(move(x)); } #endif //!
Effects
: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, const value_type& x) { return m_tree.insert_equal(p, x); } //!
Effects
: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //!
Returns
: An iterator pointing to the element with key equivalent //! to the key of x. //! //!
Complexity
: Logarithmic in general, but amortized constant if t //! is inserted right before p. #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert(const_iterator p, const detail::moved_object
& x) { return m_tree.insert_equal(p, x); } #else iterator insert(const_iterator p, value_type && x) { return m_tree.insert_equal(p, move(x)); } #endif //!
Requires
: i, j are not iterators into *this. //! //!
Effects
: inserts each element from the range [i,j) . //! //!
Complexity
: N log(size()+N) (N is the distance from i to j) template
void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } //!
Effects
: Erases the element pointed to by p. //! //!
Returns
: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //!
Complexity
: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //!
Effects
: Erases all elements in the container with key equivalent to x. //! //!
Returns
: Returns the number of erased elements. //! //!
Complexity
: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //!
Effects
: Erases all the elements in the range [first, last). //! //!
Returns
: Returns last. //! //!
Complexity
: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //!
Effects
: erase(a.begin(),a.end()). //! //!
Postcondition
: size() == 0. //! //!
Complexity
: linear in size(). void clear() { m_tree.clear(); } //!
Returns
: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //!
Returns
: A const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //!
Returns
: The number of elements with key equivalent to x. //! //!
Complexity
: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //!
Returns
: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //!
Returns
: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //!
Complexity
: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) { return m_tree.equal_range(x); } //!
Effects
: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //!
Complexity
: Logarithmic std::pair
equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template
friend bool operator== (const multiset
&, const multiset
&); template
friend bool operator< (const multiset
&, const multiset
&); /// @endcond }; template
inline bool operator==(const multiset
& x, const multiset
& y) { return x.m_tree == y.m_tree; } template
inline bool operator<(const multiset
& x, const multiset
& y) { return x.m_tree < y.m_tree; } template
inline bool operator!=(const multiset
& x, const multiset
& y) { return !(x == y); } template
inline bool operator>(const multiset
& x, const multiset
& y) { return y < x; } template
inline bool operator<=(const multiset
& x, const multiset
& y) { return !(y < x); } template
inline bool operator>=(const multiset
& x, const multiset
& y) { return !(x < y); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
inline void swap(multiset
& x, multiset
& y) { x.swap(y); } template
inline void swap(multiset
& x, detail::moved_object
>& y) { x.swap(y.get()); } template
inline void swap(detail::moved_object
>& y, multiset
& x) { y.swap(x.get()); } #else template
inline void swap(multiset
&&x, multiset
&&y) { x.swap(y); } #endif /// @cond //!This class is movable template
struct is_movable
> { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include
#endif /* BOOST_INTERPROCESS_SET_HPP */
set.hpp
Dirección de la página
Dirección del archivo
Anterior
6/9
Siguiente
Descargar
( 37 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.