x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
flat_tree.hpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\GameFactory\GameFactoryDemo\references\boost_1_35_0\boost\interprocess\containers\detail\flat_tree.hpp
Girar
Efecto
Propiedad
Historial
//////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // //////////////////////////////////////////////////////////////////////////////// // The Loki Library // Copyright (c) 2001 by Andrei Alexandrescu // This code accompanies the book: // Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design // Patterns Applied". Copyright (c) 2001. Addison-Wesley. // Permission to use, copy, modify, distribute and sell this software for any // purpose is hereby granted without fee, provided that the above copyright // notice appear in all copies and that both that copyright notice and this // permission notice appear in supporting documentation. // The author or Addison-Welsey Longman make no representations about the // suitability of this software for any purpose. It is provided "as is" // without express or implied warranty. /////////////////////////////////////////////////////////////////////////////// // // Parts of this file come from AssocVector.h file from Loki library // //////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_FLAT_TREE_HPP #define BOOST_INTERPROCESS_FLAT_TREE_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
namespace boost { namespace interprocess { namespace detail { template
class flat_tree { typedef boost::interprocess::vector
vector_t; typedef Alloc allocator_t; public: class value_compare : private Compare { typedef Value first_argument_type; typedef Value second_argument_type; typedef bool return_type; public: value_compare(const Compare &pred) : Compare(pred) {} bool operator()(const Value& lhs, const Value& rhs) const { KeyOfValue key_extract; return Compare::operator()(key_extract(lhs), key_extract(rhs)); } const Compare &get_comp() const { return *this; } Compare &get_comp() { return *this; } }; private: struct Data //Inherit from value_compare to do EBO : public value_compare { public: Data(const Compare &comp, const vector_t &vect) : value_compare(comp), m_vect(vect){} Data(const value_compare &comp, const vector_t &vect) : value_compare(comp), m_vect(vect){} Data(const Compare &comp, const allocator_t &alloc) : value_compare(comp), m_vect(alloc){} public: vector_t m_vect; }; Data m_data; public: typedef typename vector_t::value_type value_type; typedef typename vector_t::pointer pointer; typedef typename vector_t::const_pointer const_pointer; typedef typename vector_t::reference reference; typedef typename vector_t::const_reference const_reference; typedef Key key_type; typedef Compare key_compare; typedef typename vector_t::allocator_type allocator_type; typedef allocator_type stored_allocator_type; typedef typename allocator_type::size_type size_type; typedef typename allocator_type::difference_type difference_type; typedef typename vector_t::iterator iterator; typedef typename vector_t::const_iterator const_iterator; typedef std::reverse_iterator
reverse_iterator; typedef std::reverse_iterator
const_reverse_iterator; // allocation/deallocation flat_tree(const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_data(comp, a) { } flat_tree(const flat_tree& x) : m_data(x.m_data, x.m_data.m_vect) { } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_tree(const detail::moved_object
&x) : m_data(move(x.get().m_data)) { } #else flat_tree(flat_tree &&x) : m_data(move(x.m_data)) { } #endif ~flat_tree() { } flat_tree& operator=(const flat_tree& x) { m_data = x.m_data; return *this; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE flat_tree& operator=(const detail::moved_object
& mx) { m_data = move(mx.get().m_data); return *this; } #else flat_tree& operator=(flat_tree &&mx) { m_data = move(mx.m_data); return *this; } #endif public: // accessors: Compare key_comp() const { return this->m_data.get_comp(); } allocator_type get_allocator() const { return this->m_data.m_vect.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return this->m_data.m_vect.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return this->m_data.m_vect.get_stored_allocator(); } iterator begin() { return this->m_data.m_vect.begin(); } const_iterator begin() const { return this->m_data.m_vect.begin(); } iterator end() { return this->m_data.m_vect.end(); } const_iterator end() const { return this->m_data.m_vect.end(); } reverse_iterator rbegin() { return reverse_iterator(this->end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(this->end()); } reverse_iterator rend() { return reverse_iterator(this->begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(this->begin()); } bool empty() const { return this->m_data.m_vect.empty(); } size_type size() const { return this->m_data.m_vect.size(); } size_type max_size() const { return this->m_data.m_vect.max_size(); } void swap(flat_tree& other) { value_compare& mycomp = this->m_data; value_compare& othercomp = other.m_data; detail::do_swap(mycomp, othercomp); vector_t & myvect = this->m_data.m_vect; vector_t & othervect = other.m_data.m_vect; myvect.swap(othervect); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE void swap(const detail::moved_object
& other) { this->swap(other.get()); } #else void swap(flat_tree &&other) { this->swap(other); } #endif public: // insert/erase std::pair
insert_unique(const value_type& val) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(val, data); if(ret.second){ ret.first = priv_insert_commit(data, val); } return ret; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE std::pair
insert_unique(const detail::moved_object
& mval) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(mval.get(), data); if(ret.second){ ret.first = priv_insert_commit(data, mval); } return ret; } #else std::pair
insert_unique(value_type && mval) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(mval, data); if(ret.second){ ret.first = priv_insert_commit(data, move(mval)); } return ret; } #endif iterator insert_equal(const value_type& val) { iterator i = this->upper_bound(KeyOfValue()(val)); i = this->m_data.m_vect.insert(i, val); return i; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert_equal(const detail::moved_object
& mval) { iterator i = this->upper_bound(KeyOfValue()(mval.get())); i = this->m_data.m_vect.insert(i, mval); return i; } #else iterator insert_equal(value_type && mval) { iterator i = this->upper_bound(KeyOfValue()(mval)); i = this->m_data.m_vect.insert(i, move(mval)); return i; } #endif iterator insert_unique(const_iterator pos, const value_type& val) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(pos, val, data); if(ret.second){ ret.first = priv_insert_commit(data, val); } return ret.first; } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert_unique(const_iterator pos, const detail::moved_object
& mval) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(pos, mval.get(), data); if(ret.second){ ret.first = priv_insert_commit(data, mval); } return ret.first; } #else iterator insert_unique(const_iterator pos, value_type&&mval) { insert_commit_data data; std::pair
ret = priv_insert_unique_prepare(pos, mval, data); if(ret.second){ ret.first = priv_insert_commit(data, move(mval)); } return ret.first; } #endif iterator insert_equal(const_iterator pos, const value_type& val) { insert_commit_data data; priv_insert_equal_prepare(pos, val, data); return priv_insert_commit(data, val); } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE iterator insert_equal(const_iterator pos, const detail::moved_object
& mval) { insert_commit_data data; priv_insert_equal_prepare(pos, mval.get(), data); return priv_insert_commit(data, mval); } #else iterator insert_equal(const_iterator pos, value_type && mval) { insert_commit_data data; priv_insert_equal_prepare(pos, mval, data); return priv_insert_commit(data, move(mval)); } #endif template
void insert_unique(InIt first, InIt last) { for ( ; first != last; ++first) this->insert_unique(*first); } template
void insert_equal(InIt first, InIt last) { typedef typename std::iterator_traits
::iterator_category ItCat; priv_insert_equal(first, last, ItCat()); } iterator erase(const_iterator position) { return this->m_data.m_vect.erase(position); } size_type erase(const key_type& k) { std::pair
itp = this->equal_range(k); size_type ret = static_cast
(itp.second-itp.first); if (ret){ this->m_data.m_vect.erase(itp.first, itp.second); } return ret; } iterator erase(const_iterator first, const_iterator last) { return this->m_data.m_vect.erase(first, last); } void clear() { this->m_data.m_vect.clear(); } //!
Effects
: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //!
Throws
: If memory allocation throws, or T's copy constructor throws. //! //!
Complexity
: Linear to size(). void shrink_to_fit() { this->m_data.m_vect.shrink_to_fit(); } // set operations: iterator find(const key_type& k) { const Compare &key_comp = this->m_data.get_comp(); iterator i = this->lower_bound(k); if (i != this->end() && key_comp(k, KeyOfValue()(*i))){ i = this->end(); } return i; } const_iterator find(const key_type& k) const { const Compare &key_comp = this->m_data.get_comp(); const_iterator i = this->lower_bound(k); if (i != this->end() && key_comp(k, KeyOfValue()(*i))){ i = this->end(); } return i; } size_type count(const key_type& k) const { std::pair
p = this->equal_range(k); size_type n = p.second - p.first; return n; } iterator lower_bound(const key_type& k) { return this->priv_lower_bound(this->begin(), this->end(), k); } const_iterator lower_bound(const key_type& k) const { return this->priv_lower_bound(this->begin(), this->end(), k); } iterator upper_bound(const key_type& k) { return this->priv_upper_bound(this->begin(), this->end(), k); } const_iterator upper_bound(const key_type& k) const { return this->priv_upper_bound(this->begin(), this->end(), k); } std::pair
equal_range(const key_type& k) { return this->priv_equal_range(this->begin(), this->end(), k); } std::pair
equal_range(const key_type& k) const { return this->priv_equal_range(this->begin(), this->end(), k); } size_type capacity() const { return this->m_data.m_vect.capacity(); } void reserve(size_type count) { this->m_data.m_vect.reserve(count); } private: struct insert_commit_data { iterator position; }; // insert/erase void priv_insert_equal_prepare (const_iterator p, const value_type& val, insert_commit_data &data) { iterator &pos = (iterator &)(const_iterator &)p; // N1780 // To insert val at pos: // if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) // else if pos+1 == end || val <= *(pos+1) // insert val after pos // else // insert val before lower_bound(val) const value_compare &value_comp = this->m_data; if(pos == this->end() || !value_comp(*pos, val)){ if (pos == this->begin() || !value_comp(val, pos[-1])){ data.position = pos; } else{ data.position = this->priv_upper_bound(this->begin(), pos, KeyOfValue()(val)); } } //Works, but increases code complexity //else if (++pos == this->end() || !value_comp(*pos, val)){ // return this->m_data.m_vect.insert(pos, val); //} else{ data.position = this->priv_lower_bound(pos, this->end(), KeyOfValue()(val)); } } std::pair
priv_insert_unique_prepare (iterator beg, iterator end, const value_type& val, insert_commit_data &commit_data) { const value_compare &value_comp = this->m_data; commit_data.position = this->priv_lower_bound(beg, end, KeyOfValue()(val)); return std::pair
( commit_data.position , commit_data.position == end || value_comp(val, *commit_data.position)); } std::pair
priv_insert_unique_prepare (const value_type& val, insert_commit_data &commit_data) { return priv_insert_unique_prepare(this->begin(), this->end(), val, commit_data); } std::pair
priv_insert_unique_prepare (const_iterator p, const value_type& val, insert_commit_data &commit_data) { iterator &pos = (iterator &)(const_iterator &)p; //N1780. Props to Howard Hinnant! //To insert val at pos: //if pos == end || val <= *pos // if pos == begin || val >= *(pos-1) // insert val before pos // else // insert val before upper_bound(val) //else if pos+1 == end || val <= *(pos+1) // insert val after pos //else // insert val before lower_bound(val) const value_compare &value_comp = this->m_data; if(pos == this->end() || value_comp(val, *pos)){ if(pos != this->begin() && !value_comp(val, pos[-1])){ if(value_comp(pos[-1], val)){ commit_data.position = iterator(pos); return std::pair
(pos, true); } else{ return std::pair
(pos, false); } } return this->priv_insert_unique_prepare(this->begin(), pos, val, commit_data); } // Works, but increases code complexity //Next check //else if (value_comp(*pos, val) && !value_comp(pos[1], val)){ // if(value_comp(val, pos[1])){ // commit_data.position = pos+1; // return std::pair
(pos+1, true); // } // else{ // return std::pair
(pos+1, false); // } //} else{ //[... pos ... val ... ] //The hint is before the insertion position, so insert it //in the remaining range return this->priv_insert_unique_prepare(pos, this->end(), val, commit_data); } } #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template
iterator priv_insert_commit (insert_commit_data &commit_data, const Convertible &convertible) { return this->m_data.m_vect.insert(commit_data.position, convertible); } #else template
iterator priv_insert_commit (insert_commit_data &commit_data, Convertible &&convertible) { return this->m_data.m_vect.insert(commit_data.position, forward
(convertible)); } #endif template
RanIt priv_lower_bound(RanIt first, RanIt last, const key_type & key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key_extract(*middle), key)) { ++middle; first = middle; len = len - half - 1; } else len = half; } return first; } template
RanIt priv_upper_bound(RanIt first, RanIt last, const key_type & key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key, key_extract(*middle))) { len = half; } else{ first = ++middle; len = len - half - 1; } } return first; } template
std::pair
priv_equal_range(RanIt first, RanIt last, const key_type& key) const { const Compare &key_comp = this->m_data.get_comp(); KeyOfValue key_extract; difference_type len = last - first, half; RanIt middle, left, right; while (len > 0) { half = len >> 1; middle = first; middle += half; if (key_comp(key_extract(*middle), key)){ first = middle; ++first; len = len - half - 1; } else if (key_comp(key, key_extract(*middle))){ len = half; } else { left = this->priv_lower_bound(first, middle, key); first += len; right = this->priv_upper_bound(++middle, first, key); return std::pair
(left, right); } } return std::pair
(first, first); } template
void priv_insert_equal(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type len = static_cast
(std::distance(first, last)); this->reserve(this->size()+len); this->priv_insert_equal(first, last, std::input_iterator_tag()); } template
void priv_insert_equal(InIt first, InIt last, std::input_iterator_tag) { for ( ; first != last; ++first) this->insert_equal(*first); } /* template
void priv_insert_unique(FwdIt first, FwdIt last, std::forward_iterator_tag) { size_type len = static_cast
(std::distance(first, last)); this->reserve(this->size()+len); priv_insert_unique(first, last, std::input_iterator_tag()); } template
void priv_insert_unique(InIt first, InIt last, std::input_iterator_tag) { for ( ; first != last; ++first) this->insert_unique(*first); } */ }; template
inline bool operator==(const flat_tree
& x, const flat_tree
& y) { return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); } template
inline bool operator<(const flat_tree
& x, const flat_tree
& y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } template
inline bool operator!=(const flat_tree
& x, const flat_tree
& y) { return !(x == y); } template
inline bool operator>(const flat_tree
& x, const flat_tree
& y) { return y < x; } template
inline bool operator<=(const flat_tree
& x, const flat_tree
& y) { return !(y < x); } template
inline bool operator>=(const flat_tree
& x, const flat_tree
& y) { return !(x < y); } template
inline void swap(flat_tree
& x, flat_tree
& y) { x.swap(y); } } //namespace detail { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template
struct has_trivial_destructor_after_move
> { enum { value = has_trivial_destructor
::value && has_trivial_destructor
::value }; }; } //namespace interprocess { } //namespace boost { #include
#endif // BOOST_INTERPROCESS_FLAT_TREE_HPP
flat_tree.hpp
Dirección de la página
Dirección del archivo
Anterior 1/3
Siguiente
Descargar
( 23 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.