x
Yes
No
Do you want to visit DriveHQ English website?
Inicio
Características
Precios
Prueba gratuita
Software cliente
Acerca de nosotros
Servidor de archivos
|
Solución de copias de seguridad
|
Servidor FTP
|
Servidor de correo electrónico
|
Alojamiento web
|
Software cliente
Servidor de archivos
Solución de copia de seguridad
Servidor FTP
Servidor de correo electrónico
Alojamiento web
Software cliente
btVoronoiSimplexSolver.cpp - Hosted on DriveHQ Cloud IT Platform
Arriba
Subir
Descargar
Compartir
Publicar
Nueva carpeta
Nuevo archivo
Copiar
Cortar
Eliminar
Pegar
Clasificación
Actualizar
Ruta de la carpeta: \\game3dprogramming\materials\DarkPuzzle\libs\bullet_src\BulletCollision\NarrowPhaseCollision\btVoronoiSimplexSolver.cpp
Girar
Efecto
Propiedad
Historial
/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Elsevier CDROM license agreements grants nonexclusive license to use the software for any purpose, commercial or non-commercial as long as the following credit is included identifying the original source of the software: Parts of the source are "from the book Real-Time Collision Detection by Christer Ericson, published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc." */ #include "btVoronoiSimplexSolver.h" #include
#include
#define VERTA 0 #define VERTB 1 #define VERTC 2 #define VERTD 3 #define CATCH_DEGENERATE_TETRAHEDRON 1 void btVoronoiSimplexSolver::removeVertex(int index) { assert(m_numVertices>0); m_numVertices--; m_simplexVectorW[index] = m_simplexVectorW[m_numVertices]; m_simplexPointsP[index] = m_simplexPointsP[m_numVertices]; m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices]; } void btVoronoiSimplexSolver::reduceVertices (const btUsageBitfield& usedVerts) { if ((numVertices() >= 4) && (!usedVerts.usedVertexD)) removeVertex(3); if ((numVertices() >= 3) && (!usedVerts.usedVertexC)) removeVertex(2); if ((numVertices() >= 2) && (!usedVerts.usedVertexB)) removeVertex(1); if ((numVertices() >= 1) && (!usedVerts.usedVertexA)) removeVertex(0); } //clear the simplex, remove all the vertices void btVoronoiSimplexSolver::reset() { m_cachedValidClosest = false; m_numVertices = 0; m_needsUpdate = true; m_lastW = btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30)); m_cachedBC.reset(); } //add a vertex void btVoronoiSimplexSolver::addVertex(const btVector3& w, const btPoint3& p, const btPoint3& q) { m_lastW = w; m_needsUpdate = true; m_simplexVectorW[m_numVertices] = w; m_simplexPointsP[m_numVertices] = p; m_simplexPointsQ[m_numVertices] = q; m_numVertices++; } bool btVoronoiSimplexSolver::updateClosestVectorAndPoints() { if (m_needsUpdate) { m_cachedBC.reset(); m_needsUpdate = false; switch (numVertices()) { case 0: m_cachedValidClosest = false; break; case 1: { m_cachedP1 = m_simplexPointsP[0]; m_cachedP2 = m_simplexPointsQ[0]; m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0] m_cachedBC.reset(); m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.)); m_cachedValidClosest = m_cachedBC.isValid(); break; }; case 2: { //closest point origin from line segment const btVector3& from = m_simplexVectorW[0]; const btVector3& to = m_simplexVectorW[1]; btVector3 nearest; btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); btVector3 diff = p - from; btVector3 v = to - from; btScalar t = v.dot(diff); if (t > 0) { btScalar dotVV = v.dot(v); if (t < dotVV) { t /= dotVV; diff -= t*v; m_cachedBC.m_usedVertices.usedVertexA = true; m_cachedBC.m_usedVertices.usedVertexB = true; } else { t = 1; diff -= v; //reduce to 1 point m_cachedBC.m_usedVertices.usedVertexB = true; } } else { t = 0; //reduce to 1 point m_cachedBC.m_usedVertices.usedVertexA = true; } m_cachedBC.setBarycentricCoordinates(1-t,t); nearest = from + t*v; m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]); m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]); m_cachedV = m_cachedP1 - m_cachedP2; reduceVertices(m_cachedBC.m_usedVertices); m_cachedValidClosest = m_cachedBC.isValid(); break; } case 3: { //closest point origin from triangle btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); const btVector3& a = m_simplexVectorW[0]; const btVector3& b = m_simplexVectorW[1]; const btVector3& c = m_simplexVectorW[2]; closestPtPointTriangle(p,a,b,c,m_cachedBC); m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; m_cachedV = m_cachedP1-m_cachedP2; reduceVertices (m_cachedBC.m_usedVertices); m_cachedValidClosest = m_cachedBC.isValid(); break; } case 4: { btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.)); const btVector3& a = m_simplexVectorW[0]; const btVector3& b = m_simplexVectorW[1]; const btVector3& c = m_simplexVectorW[2]; const btVector3& d = m_simplexVectorW[3]; bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC); if (hasSeperation) { m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] + m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3]; m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] + m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3]; m_cachedV = m_cachedP1-m_cachedP2; reduceVertices (m_cachedBC.m_usedVertices); } else { // printf("sub distance got penetration\n"); if (m_cachedBC.m_degenerate) { m_cachedValidClosest = false; } else { m_cachedValidClosest = true; //degenerate case == false, penetration = true + zero m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); } break; } m_cachedValidClosest = m_cachedBC.isValid(); //closest point origin from tetrahedron break; } default: { m_cachedValidClosest = false; } }; } return m_cachedValidClosest; } //return/calculate the closest vertex bool btVoronoiSimplexSolver::closest(btVector3& v) { bool succes = updateClosestVectorAndPoints(); v = m_cachedV; return succes; } btScalar btVoronoiSimplexSolver::maxVertex() { int i, numverts = numVertices(); btScalar maxV = btScalar(0.); for (i=0;i
= btScalar(0.0) && d4 <= d3) { result.m_closestPointOnSimplex = b; result.m_usedVertices.usedVertexB = true; result.setBarycentricCoordinates(0,1,0); return true; // b; // barycentric coordinates (0,1,0) } // Check if P in edge region of AB, if so return projection of P onto AB btScalar vc = d1*d4 - d3*d2; if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) { btScalar v = d1 / (d1 - d3); result.m_closestPointOnSimplex = a + v * ab; result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexB = true; result.setBarycentricCoordinates(1-v,v,0); return true; //return a + v * ab; // barycentric coordinates (1-v,v,0) } // Check if P in vertex region outside C btVector3 cp = p - c; btScalar d5 = ab.dot(cp); btScalar d6 = ac.dot(cp); if (d6 >= btScalar(0.0) && d5 <= d6) { result.m_closestPointOnSimplex = c; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(0,0,1); return true;//c; // barycentric coordinates (0,0,1) } // Check if P in edge region of AC, if so return projection of P onto AC btScalar vb = d5*d2 - d1*d6; if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) { btScalar w = d2 / (d2 - d6); result.m_closestPointOnSimplex = a + w * ac; result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(1-w,0,w); return true; //return a + w * ac; // barycentric coordinates (1-w,0,w) } // Check if P in edge region of BC, if so return projection of P onto BC btScalar va = d3*d6 - d5*d4; if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) { btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); result.m_closestPointOnSimplex = b + w * (c - b); result.m_usedVertices.usedVertexB = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(0,1-w,w); return true; // return b + w * (c - b); // barycentric coordinates (0,1-w,w) } // P inside face region. Compute Q through its barycentric coordinates (u,v,w) btScalar denom = btScalar(1.0) / (va + vb + vc); btScalar v = vb * denom; btScalar w = vc * denom; result.m_closestPointOnSimplex = a + ab * v + ac * w; result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexB = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(1-v-w,v,w); return true; // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w } /// Test if point p and d lie on opposite sides of plane through abc int btVoronoiSimplexSolver::pointOutsideOfPlane(const btPoint3& p, const btPoint3& a, const btPoint3& b, const btPoint3& c, const btPoint3& d) { btVector3 normal = (b-a).cross(c-a); btScalar signp = (p - a).dot(normal); // [AP AB AC] btScalar signd = (d - a).dot( normal); // [AD AB AC] #ifdef CATCH_DEGENERATE_TETRAHEDRON #ifdef BT_USE_DOUBLE_PRECISION if (signd * signd < (btScalar(1e-8) * btScalar(1e-8))) { return -1; } #else if (signd * signd < (btScalar(1e-4) * btScalar(1e-4))) { // printf("affine dependent/degenerate\n");// return -1; } #endif #endif // Points on opposite sides if expression signs are opposite return signp * signd < btScalar(0.); } bool btVoronoiSimplexSolver::closestPtPointTetrahedron(const btPoint3& p, const btPoint3& a, const btPoint3& b, const btPoint3& c, const btPoint3& d, btSubSimplexClosestResult& finalResult) { btSubSimplexClosestResult tempResult; // Start out assuming point inside all halfspaces, so closest to itself finalResult.m_closestPointOnSimplex = p; finalResult.m_usedVertices.reset(); finalResult.m_usedVertices.usedVertexA = true; finalResult.m_usedVertices.usedVertexB = true; finalResult.m_usedVertices.usedVertexC = true; finalResult.m_usedVertices.usedVertexD = true; int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d); int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b); int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c); int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a); if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0) { finalResult.m_degenerate = true; return false; } if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC) { return false; } btScalar bestSqDist = FLT_MAX; // If point outside face abc then compute closest point on abc if (pointOutsideABC) { closestPtPointTriangle(p, a, b, c,tempResult); btPoint3 q = tempResult.m_closestPointOnSimplex; btScalar sqDist = (q - p).dot( q - p); // Update best closest point if (squared) distance is less than current best if (sqDist < bestSqDist) { bestSqDist = sqDist; finalResult.m_closestPointOnSimplex = q; //convert result bitmask! finalResult.m_usedVertices.reset(); finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB; finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; finalResult.setBarycentricCoordinates( tempResult.m_barycentricCoords[VERTA], tempResult.m_barycentricCoords[VERTB], tempResult.m_barycentricCoords[VERTC], 0 ); } } // Repeat test for face acd if (pointOutsideACD) { closestPtPointTriangle(p, a, c, d,tempResult); btPoint3 q = tempResult.m_closestPointOnSimplex; //convert result bitmask! btScalar sqDist = (q - p).dot( q - p); if (sqDist < bestSqDist) { bestSqDist = sqDist; finalResult.m_closestPointOnSimplex = q; finalResult.m_usedVertices.reset(); finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB; finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC; finalResult.setBarycentricCoordinates( tempResult.m_barycentricCoords[VERTA], 0, tempResult.m_barycentricCoords[VERTB], tempResult.m_barycentricCoords[VERTC] ); } } // Repeat test for face adb if (pointOutsideADB) { closestPtPointTriangle(p, a, d, b,tempResult); btPoint3 q = tempResult.m_closestPointOnSimplex; //convert result bitmask! btScalar sqDist = (q - p).dot( q - p); if (sqDist < bestSqDist) { bestSqDist = sqDist; finalResult.m_closestPointOnSimplex = q; finalResult.m_usedVertices.reset(); finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC; finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; finalResult.setBarycentricCoordinates( tempResult.m_barycentricCoords[VERTA], tempResult.m_barycentricCoords[VERTC], 0, tempResult.m_barycentricCoords[VERTB] ); } } // Repeat test for face bdc if (pointOutsideBDC) { closestPtPointTriangle(p, b, d, c,tempResult); btPoint3 q = tempResult.m_closestPointOnSimplex; //convert result bitmask! btScalar sqDist = (q - p).dot( q - p); if (sqDist < bestSqDist) { bestSqDist = sqDist; finalResult.m_closestPointOnSimplex = q; finalResult.m_usedVertices.reset(); // finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA; finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; finalResult.setBarycentricCoordinates( 0, tempResult.m_barycentricCoords[VERTA], tempResult.m_barycentricCoords[VERTC], tempResult.m_barycentricCoords[VERTB] ); } } //help! we ended up full ! if (finalResult.m_usedVertices.usedVertexA && finalResult.m_usedVertices.usedVertexB && finalResult.m_usedVertices.usedVertexC && finalResult.m_usedVertices.usedVertexD) { return true; } return true; }
btVoronoiSimplexSolver.cpp
Dirección de la página
Dirección del archivo
Anterior
26/27
Siguiente
Descargar
( 17 KB )
Comments
Total ratings:
0
Average rating:
No clasificado
of 10
Would you like to comment?
Join now
, or
Logon
if you are already a member.